University of

Nottingham

UK | CHINA | MALAYSIA

FEM Algorithms in C++

G14DIS

Mathematics 4th Year Dissertation
2019/20

School of Mathematical Sciences, University of Nottingham

Adam Matthew Blakey

14286792

Supervisor: Prof Paul Houston
Project code: PH D2

Assessment type: Research-Informed Investigation

| have read and understood the School and University guidelines on plagiarism. | confirm that this work
is my own, apart from the acknowledged references.

Abstract

This report investigates efficient algorithms used in approximating solutions to both linear

and nonlinear differential equations with the finite element method.

The report begins by laying the analytical framework, setting up some model problems, and

(for the linear case) proving existence and uniqueness of solutions to these model problems.

All major results in this report are produced using a bespoke software package, titled Blakey
FEM, which applies a posteriori error estimates to certain classes of linear and nonlinear model
problems; this application leads to efficient adaptivity strategies of both meshing and choice

of interpolating functions.

This report found that there exist hp-adaptive strategies that yield exponential convergence

rates between finite element solutions and true solutions for various model problems.

Acknowledgements

| am very grateful to my supervisor, Professor Paul Houston, for his invaluable guidance and
advice throughout this project — and for introducing me to such a fascinating area of mathe-

matics that | did not know existed!

A special thank you goes to Eleanor, Andy, Chris, and my mam, who have all helped through

the vital proofreading process.

Digital Copy

Visithttps://github. com/JustAdamHere/G14DIS for a copy of the code used for results
in this report. You can also visithttps://r.blakey.family/BlakeyFEMPresentation fora

copy of the presentation slides given on 12th March 2020.

https://github.com/JustAdamHere/G14DIS
https://r.blakey.family/BlakeyFEMPresentation

Contents

il

Introduction

R

Background

R FEMNotation e

R.2 Weak Solutionsof PDEsin R

2.2.1 ModelProblem o
.22 LTax-Milgraml e

B.3 Elementy e

B.4 LinearSolvery e e e e e

B.5 NonlinearSolvers e

B.6 Quadraturg e e e e e e e e e e

B.7 Object-Oriented Design e

B.8 Simple Numerics e e e e

A Posteriori Error Estimation and Adaptivity|

B.1 A Posteriori Error Estimationin1D
B.2 ExampleProblems
B.3 h-adaptivity e e e e e e e e e
B.4 p-adaptivityl e e e e e e
B.5 hp-adaptivityl L

B.6 ResultsSummary e e e e e e e e e

14
15
16

19

21
23
24
28
30
32
33
35
37

41

b

Nonlinear Problemg

b.1 Simple Numerics

3

Conclusiong

B

References

87
90

95

97

104

Section 1

Introduction

Differential equations are often used to explain and predict new facts about everything that
changes continuously [13] such as weather prediction, planetary orbits, and the best way to
design an aeroplane. It is vital, therefore, that we are able to compute solutions to these gov-

erning equations to some reasonable accuracy.

Many differential equations do not have analytical solutions, so one of two approaches is
usually taken instead: solve a modified simpler equation to approximate the original solution,
or approximate solutions directly [8, p. 260]; the latter is the focus of this report, specifically
using numerical methods, as these are the principal choice for those approximating solutions

of differential equations.

Various options for numerically approximating solutions to differential equations exist in-
cluding finite difference methods [34]], finite volume methods [26], and finite element methods
[10] which is the method of choice for this report. Finite element methods are advantageous
over other methods as they can express complicated geometries (for example the work of Giani
et. al [14]]) much more easily than finite difference methods [8, p. 746]. One can also derive re-
liable and efficient solution-independent error bounds, that locally give indications of the size

of the error [42, p. 2733].

Finite element methods (FEMs) also permit high orders of convergence under the right con-
ditions, through so-called p-refinement [27, p. 228]; however these high convergence rates
can rely on certain amounts of regularity [10, p. 125]. There also exist h-adaptive techniques,
where one can sequentially change the domain upon which the solution is approximated [41],
but these techniques can only attain polynomial convergence rates at best [27, p. 228]. There-

fore, in recent years, techniques concerned with a combination of the two (called hp-adaptive

Section 1 FEM Algorithms in C++

methods) have become increasingly sought and applied effectively [42, p. 2731]. These hp-
adaptive methods require two main ingredients: computable local error estimators, and steer-
ing criterion (presented in this report with a smoothness indicator) [22], which will be discussed

in detail in Section .

The motivation for hAp-adaptive FEM originates in the numerical solution of practical prob-
lems of physics or engineering, where one often encounters the difficulty that the overall accu-
racy of the numerical approximation is degraded by local singularities [39][p. 67]. By calculating
local error estimators, one can subsequently use these to enrich the underlying approximation

space in an adaptive manner [23, p. 2642].

This report found that h-adaptive algorithms could yield high (polynomial) convergence rates
for some problems, and p-adaptive algorithms could yield high (exponential) convergence rates.
Whilst these rates were often found to be more beneficial than their respective global refine-
ment algorithms, the hAp-adaptive algorithm appeared to perform the best at minimising both

the error (in an appropriate norm) and the degrees of freedom.

Starting with a basic introduction in Section @, we will introduce the common notations used
in FEM analysis, as well as introducing some one-dimensional model problems which inform the
numerical results in later sections. Section B discusses the specificimplementation features of a
bespoke software package written for this project, in particular highlighting the design choices
made to benefit performance. We then derive local error estimators for a one-dimensional
problem in Section [, paving the way for the h-, p-, and hp-adaptive algorithms, as well as a
comparison of their performance through some numerical experiments. Section [f introduces
a nonlinear problem from which we derive similar error estimators, and apply these to more
numerical experiments. Concluding the report, Section [g highlights the results of this project,

what problems were encountered, and some suggestions for further work in the area.

page 7

Section 2

Background

In this section, the mathematical foundations for this report are laid out; these inform much

of the implementation in Section B as well as the error analysis in Section f.

2.1 FEM Notation

We will introduce some preliminary notions needed for understanding the mathematics to

finite element methods.

2.1.1 [” Spaces

In general, it does not make sense to ask what the length of a vector is in a vector space, but
a norm is a concept designed to address this [11, p. 8]. There are many choices of norms in

different vector spaces, as long as they satisfy some conditions.

Definition 2.1 (Norm, similar to [11, def. 1.3.1]).
We define a norm as a function x — ||z|| some vector space, (), to R, provided that it satisfies

the following conditions:

e lz =0 =2 =0

o Azl = [Allle]|, V2 € E,VA € C

Section 2 FEM Algorithms in C++

* x4yl < llzll + llyll,ve,y € Q

We may also introduce the concept of an inner product, from which we may induce a norm.
Definition 2.2 (Inner product, similar to [11, def 3.2.1]).

We define an inner product on a vector space, V, as a mapping (-, -) : V xV — C that satisfies:

® (x7y>:(y7x)7vx7y€v
o (ax+ By, z) = a(z,2) + By, 2),Yz,y,2 € ViVa,B € C

e (z,x) >0, with(z,z) =02 =0
Note that we may induce a norm from the inner product by

llly = v/ (z, 2),

wherexz € V.

For ease of notation, we also make the following two definitions:

Definition 2.3 (Range of integers).
We define
la, by = [a,b] NN,

where [a,b] = {z : a < x Az < b,a,b € R}. We do this similarly for (a,b), [a,b), and (a,]|

noting that we do allow slightly abusive notation with b = oc.

Definition 2.4 (Inner product notation).

We define the inner product, for u,v € V as

(u,v) ::/ﬂuvd:&.

page 9

FEM Algorithms in C++ Section 2

LP spaces, commonly referred to as Lebesgue spaces, refer to the space of functions where

some integral of a function is finite, as shown in the following definition.
Definition 2.5 (L” space, [9, p. 409]).
For u a complex-valued, locally integrable function, the L? space is defined as:

L(Q) = {u: [ull 20y < o0},

with norm

ol = (\u<x>rpdx)é.

2.1.2 Weak Derivatives and FEMs

When dealing with finite element methods, we will often come across functions such as

T ifz >0
u(z) =

—x ifx <0,

where the function may be continuous but the derivative may be discontinuous at a point. We
therefore may introduce the concept of a weak derivative, as well as some other notation that

we will use.

Definition 2.6 (Multi-index).
If o« = (aq, ..., auy) is an m-tuple where each o; € Ny, then we call « a multi index and denote

x* as the monomial

.o
and similarly D* as
a1 Qm
D ...Dyy

where D; = % [2, p. 1]. We also denote |o| = oy + ... + ayp,.
J

Definition 2.7 (Weak derivative).
page 10

Section 2 FEM Algorithms in C++

Foru € V, where fQ |u| dz, we define w as the ath weak derivative u provided that it satisfies

/Q (@) D%(z) dx = (—1) / w(z)v(z) dz,

Q

forallv € C§°(2), where C3°(R2) is the space of infinitely-differentiable functions with compact

support on) and « defines a multi-index.

Sobolev spaces act as an extension to the LP spaces with the inclusion of some regularity on

weak derivatives of functions.

Definition 2.8 (Sobolev space, [33, p. 2]).

For k € [0, 00)y and © C R™, with Lipschitz-continuous boundary, we define:
H*(Q) == {u € L*(Q) : D*u € L*(Q),V|a| < k},

which is equipped with norm

[NIES

a 2
HUHHk(Q) = Z 1D U||L2(Q) ,
oo <k
and a semi-norm of
1
2
a 2
|u’Hk'(Q) = Z 1D UHL2(Q)
la|=k

We note that H*(Q) is a Hilbert space, and is often referred to as the one-dimensional

Sobolev space of kth order on ().

The Cauchy-Schwarz inequality is very useful for the analysis of the a posteriori error bound

in Section [, so we define it here: For u,v € V, V a vector space with some norm:

|(w, 0)v| < Hlullyl[olly, (2.2)

where (-,)y is an inner product on V, and ||-||;, isanormon V.

page 11

FEM Algorithms in C++ Section 2

We also have the triangle inequality: For z,y € V, where V is a vector space with an inner
product, we have

[u+]| < [Jull + (], (2.2)
as stated by Debnath et. al [11, co. 3.2.10].

We also state the following lemma, which follows directly from the definition of [[-[| ;1 q)-

Lemma 2.1.

Forany u € H'(Q) we have

[ull 12y < llull grq)-

We now have the mathematical tools to define what a finite element space describes. We
state it here in its most general form, but in practical terms we will deal directly with these

individual aspects of the finite element without mention of this formal definition.

Definition 2.9 (Finite element, [[10, p. 78]).

A finite element in R% is a triple K = (2, P,X), where:

e s aclosed subset of R, int 2 # () and OS) is Lipschitz-continuous;
e P s aspace of functions from K to R;

e ¥ := {¢;}Nisafinite set of linearly independent linear forms, ¢,, defined over P; itis also

assumed that ¥ is P-unisolvent. That is: Vo,; € R, 3lp € P s.t. ¢;(p) = Vi € [1, N]n.

We call 3. the degrees of freedom (DoF).

Finite element methods rely heavily on the use of integration by parts; we will state the

divergence theorem here, then state prove integration by parts.

Theorem 2.1 (Divergence theorem).

For Q0 C R™ compact and 0f) piecewise smooth, u sufficiently differentiable in), and n the
page 12

Section 2 FEM Algorithms in C++

outward-pointing unit normal at each point on 05 we have

/Vudzzj{ un dS.
Q 80

From the divergence theorem, given in Theorem .1, we can now construct a proof of inte-

gration by parts.

Theorem 2.2 (Integration by parts).

Taking 2 and n as in Theorem P.1, we have
/ uVudr = / uvndS — / vVudz,
Q o9 Q
where u and v are sufficiently differentiable in €.

Proof. From Theorem .1l we may take u — ww. This yields

/Vuvd:c:f (uv)ndS
Q o0

It is convenient to now write each vector in terms of its individual components, denoted by

index 1:

/ i(ulvl) dr = f (ulv,)nl dS, Vi € [1,n]N.
0 0; o0

By the product rule for differentiation we have

auivi dx + / u; Ovi dx :7{ (uv;)n; dS, Yi € [1,n]y,
o 0 a0

and returning to the original notation we have

/Q(Vu)v dx—i—/ﬂu(Vv) do = 729 won dS.

page 13

FEM Algorithms in C++ Section 2

After some rearrangement we have the result:

/qudx:/ uvndS—/vVudx.
Q 80 Q

2.2 Weak Solutions of PDEs in R

For solving partial differential equations we ultimately want to find the solution, u, of the

equation in some space, V. Mathematically we want to find u € V s.t.
Lu = f,in€) (2.3)

where L is some differential operator and f is some forcing function independent of u. We
may instead consider a similar problem — which we refer to as the weak formulation — which
is roughly constructed through the following steps:

1. Multiply Equation (2.3) by a test function, v € V;

2. Integrate the resulting equation over the domain, €;

3. Apply integration by parts to reduce the highest order of derivation on u and v;

4. Apply appropriate boundary conditions to v and v.

This weak formulation will yield solutions for which not all derivatives may exist (or may have
weak derivatives). We call these solutions weak solutions (opposed to strong solutions, which

satisfy the criteria in Definition .7). A specific example of a weak formulation is calculated in

the following section.

page 14

Section 2 FEM Algorithms in C++

2.2.1 Model Problem

We restrict ourselves for the remainder of the report to consider only two model problems:
a linear and a nonlinear problem. In this section, we will only state the linear PDE problem and
derive its weak formulation, and then prove the existence and uniqueness of solutions. The

nonlinear problem will be introduced in Section f.

We consider the partial differential equation stated in Equation (2.4)), i.e., given a bounded

Lipschitz domain 2 C R?, d > 1, we seek u such that

—eAu+ cu = f(x),x € 0, (2.4a)

u =0, on 0. (2.4b)

Here, ¢ > 0 and ¢ > 0 and f represent the reaction and forcing terms, respectively. This
is a relatively standard model equation and similar problems are also chosen by Wihler [42],

Houston et. al [21], and Mitchell et. al [27].

For this problem, we seek u in the function space H&(Q) =: V/; note that this imposes our

boundary conditions, and assumes sufficient regularity of the solution, w.

To derive the weak formulation of Equation (2.4) we first multiply Equation (2.43) by v €

H;3 () and integrate over), which yields:

—E/Auvdx—i-/cuvdx:/fvdx, Yv e V.
Q Q Q

We notice now that u has two derivatives (from the Laplacian) in the first term of this ex-

pression and v has zero. We can therefore apply integration by parts, as given in Theorem

page 15

FEM Algorithms in C++ Section 2

to give

e/Vu-V’udx—/ (Vu-n)vds—i—/cuvd:c—/fvdx,VvGV,
Q o9 Q Q

where n denotes the unit outward normal vector to the boundary, 9€). Noting that v € V and

hence v = 0 on 0f) we get: find u € V such that

e/Vu-Vvdx+/cuvda::/fvda:,VvEV.
Q Q Q

Rewriting the above equation in inner product notation, the weak formulation of Equation

(2.4)) is given by: find v € V such that

e(Vu, Vo) + (cu,v) = (f,v), Yv € V. (2.5)
Notice that this is still an infinite-dimensional problem which will be projected to a finite-
dimensional space later.

We will see in Section 2.3 that this model problem has a solution that is unique.

2.2.2 Lax-Milgram

The Lax-Milgram theorem, named after the pair that solved it in 1954, is a pivotal theorem

that guarantees existence and uniqueness of solutions to the problems described in Section

2.1

Theorem 2.3 (Lax-Milgram, [11, p. 157]).
Let a be a bounded, coercive, bilinear functional on a Hilbert space, V. For every bounded linear

functional [on V, there exists a unique u. € V such that

a(u,v) =l(v), Yo € V.

page 16

Section 2 FEM Algorithms in C++

We may note that to show boundedness, we can instead show that @ and [are continuous.
Therefore to satisfy Theorem .3 for a bilinear functional, a, and a linear functional, /, we just

need to find ¢y, ¢, co € Rs.t.

e Coercivity of a: a(u,u) < COHUHJZLF(Q);
 Continuity of a: |a(u,v)| < CIHUHHI(Q)HUHHI(Q)i
e Continuity of I: [[(v)| < caf|v[| 1 (q)-
We will now use the Lax-Milgram theorem to prove uniqueness and existence of the linear
model problem outlined in Section 2.2.1l.
Lemma 2.2 (Uniqueness and existence of linear model problem).

Equation (2.4) admits a solution that is unique.

Proof. We begin by taking
and

from Equation (2.5), where u,v € H'(2).

From the definitions of a and [we see immediately that they are respectively bilinear and

linear in their arguments.
To show coercivity of a, we see that a(u, u) = el|ul| ;2 + [[Vcull j2(q)-

Let ¢s := max,(1/c(z)). Then:

2
a(u,u) = EHUHiQ(Q) + H\/EUHLQ(Q)
2 2
< elullz2q) + CgHuHL?(Q)
2 2
< co/2[|ull72 () + co/2[|ull 720,

page 17

FEM Algorithms in C++ Section 2

where we have now defined ¢, := 2 max(e, ¢). Noting Lemma 2.1, we have coercivity:

2
a(u, v) < col[ullz (o)

For continuity of a, let us recall that a(u,v) = ¢(Vu, Vv) + (cu, v).
By the triangle inequality from Equation (2.2) we have
|a(u, v)| = [e(Vu, Vv) + (cu, v)|

< [e(Vu, Vo)| +[(cu, v)]

= €|(Vu, Vv)| + cpl(cu,v)|,

noting that € > 0 and ¢,, := max, |c(x)|.

By employing the Cauchy-Schwarz inequality from Equation (2.1) we get

|a(u, v)] < €el|Vull 2 [Vl 20y + mllull L2y [[0]] L2 -

By letting ¢; := max,(¢, ¢,,) we have continuity:

|a(u, v)| < €| Vul| oo [IVOll 2 () + cmllull 2oy V] 2o
< allVull o) [Vl 2@ + allull2o)llvll 2 g
< ClHVU”LZ(Q)HVUHLZ(Q) + cl”uHLQ(Q)HUHLQ(Q)
+ al|Vull 20l p2) + callull 2) IVOll 120
< er([[ulfz@) + VUl T2 (1072 + 1V0l1720)

= CIHUHHl(Q)”UHHl(Q)'

page 18

Section 2 FEM Algorithms in C++

To show continuity of [, we first recall the definition of [as

l(v) = (f,v).

Employing again the Cauchy-Schwarz inequality gives

L) = I(f,)]

< Mz @10l 2 o)-

Noting Lemma P.1] gives

L] < AN 2o 101l a1

and defining c; := || f{| ;2(q) we have

[(v)| < CQHUHHl(Q)v

which shows that [(v) is a continuous functional.

We have shown that the bilinear functional, a, is coercive and continuous in Hl(Q), and we
have shown that the linear functional, I, is continuous in H*(2). By Theorem .3 we have that
Jlu € HY(Q) s.t.

a(u,v) = I(v), Vv € H'(Q),

which is the same as saying that Equation (R.4) admits a unique solution. L]

2.3 hp-FEM

When setting up our FEM version of the problem, it is helpful to set it up in such a way that the
size, shape, and degree of the polynomial interpolant on each element may vary independently

of any other element. We make the following definitions.

page 19

FEM Algorithms in C++ Section 2

Definition 2.10 (Polynomial space).

Akin to the definition in [10], Pp(S2) = {u(x) : u is a polynomial of degree r < P on 1}.

We could have chosen, for example, B-splines or Fourier series to express our solutions, but

we have chosen polynomials here.

Now we have a general definition of an FEM where we may freely choose the width of ele-

ments (h) and the polynomial degrees of the interpolants (p), and hence the name of hp-FEMs.

We create a mesh in one dimension which is the set of coordinates, {x;}, that span (.
We note that the coordinates do not have to be evenly spaced, but we do require that they are

ordered zy < ... < Ty.

We take Equation .5, which describes an infinite-dimensional problem, and we now re-
strict to a finite-dimensional problem. For some set of basis functions, {¢, j-”io that lie in

Pp(x;—1,x;) for some i € [1, N], we now define
Vh = {u S Hl(Q) . u|(xi717xi) S PP(ZEi_l,iL'i),i S [1, N]N},

so that the solution restricted to each element is a polynomial. Our new problem, which we

refer to as the finite element approximation, is: find u, € V}, such that

e(Vupp, Vup) + (cunp, vn) = (f,vn), Yo, € V. (2.6)

We stress here that this is now a finite-dimensional problem, which can be approximated

computationally.

page 20

Section 3

Implementation: Blakey FEM

Many FEM solvers already exist such as Autodesk Simulation, FEFLOW, Deal Il, FEniCS, and
Goma; these software packages are written in a range of different languages, all set up to solve
slightly different problems, making use of specific language features. However many of these
software packages fail to make use of hp-adaptive methods, which can lead to very high orders

of convergence if used correctly [42].

Our implementation is called Blakey FEM and is written in C++. C++ is low-level and gives
the programmer control of memory management, which allows for more efficient algorithms
[24]. It is also an object-oriented language: the object-oriented paradigm is convenient for us
humans, as its primary focus is to define the structure of how the data will be organised and
is often likened to real life examples. The intuitiveness of this organisation would allow a dog
class, say, to have a method Dog.bark(). This intuitiveness is also often extended through
a technique called abstraction, which allows other programmers or users to deal only with
interfaces of classes, and not the specific implementation; this may mean to say that we don’t

really care how a dog barks, as long as it barks.

In real life we may encounter objects that are very similar and share some common logic;
the object-oriented paradigm gives us a mechanism called inheritance which allows for some
methods and data to be written in the super-class and be reused in the sub-classes. This can
be best described by a specific example. Inspired from [29], we may make an inheritance dia-
gram of structures that we may encounter in our everyday lives; this idea then extends to how
we may construct classes in an object-oriented language. Take Figure B.1], for example, which
shows an inheritance diagram of some animals along with some methods. Notice that the

middle portions of the nodes indicate structural properties (including data), and the bottom

FEM Algorithms in C++ Section 3

portions indicate methods (manipulators to the data).

We see from Figure B.1 that all derived classes of Animal (i.e. Mammal, Cat, Reptile, Human,
and Snake) all share, among others, the property hungerLevel (so every animal can be hun-
gry). However it only makes sense for Cat to have the method meow (), for obvious cat-related

reasons.

Animal
hungerlLevel
energyLevel

eat()

Mammal

skinColour
needsToSweat

Reptile
scalesShedded

Cat Human
clawlLength languageSpoken

meow() sayHello()

Snake
poisonLevel

shedSkin()
bite()

Figure 3.1: An example of an inheritance diagram with different animals and categories of animals.

The code structure and implementation choices of Blakey FEM are heavily influenced by [33],
which details choices for all aspects needed to be considered in an FEM program. The following
sections describe the choices made forimplementing the code including details regarding linear
solvers, quadrature calculation, and the specific object-oriented design structure. We note,
however, that Blakey FEM is currently a one-dimensional FEM package — but design choices

have been made that would support easy extensibility to higher dimensions.

page 22

Section 3 FEM Algorithms in C++

3.1 Meshes

A mesh describes the discretised version of the domain upon which we are solving and —
depending upon how the domain is discretised — can actually have a huge impact upon on our
numerical approximation of the solution (as demonstrated in the work of Wilbraham [43], but

now commonly referred to as Gibbs phenomenon).

With ourimplementation we decided to make a class Mesh which basically acts as a container
for the elements, for which a class structure is displayed in Figure B.2. The declarations for this
class can be found at . /src/mesh . hpp and the definitions can be found at . /src/mesh. cpp,

through the GitHub repository give on Page 2.

Mesh

noElements : int
noNodes : int
dimProblem : int
ownsElements : bool
+ elements : Elements*

+ Mesh(a_noElements : int)

+ Mesh(a_elements : Elements)
+ Mesh()

+ get_dimProblem() : int

+ get_noElements() : int

+ get_noNodes() : int

Figure 3.2: Class structure for Mesh.

LMGEICEICRA e Y i igilade]ell Mesh (int a_noElements) Elils] Mesh (Elements a_elements) §

The former constructs a mesh on [0, 1] with elements of equal width; and the latter constructs
a mesh with the provided elements, which the user should populate manually for more control

over the mesh.

The property is a pointer to an instance of the Elements class de-
scribed in the next section. These are populated either through the first constructor or refer-

enced by the second constructor.

The other properties are relatively self-explanatory, with the relevant getters:
page 23

FEM Algorithms in C++ Section 3

is the number of elements in the mesh, is the number of nodes in the mesh,
and is the dimension of the problem. We note that the dimension of the
problem for the implementation in this report is fixed as 1; however, due to the object-oriented
techniques and careful design of the implementation, it would be relatively easy to implement

meshes on higher dimensions — and this parameter in the class would help to facilitate this.

3.2 Polynomial Spaces

With the hp-FEMs that we are implementing, we have chosen the shape functions as poly-
nomials — and we need to be able to describe these polynomial basis functions in general for
any order exponent and for any order derivative. We could have also chosen functions besides
polynomials, such as Fourier shape functions [19] or B-splines (although technically polynomi-
als, they don’t behave in the same way with degrees of freedom) [116, 17]; however we have
chosen polynomials due to their high convergence rates and resulting reduction in the number

of degrees of freedom [17, p. 1].

As well as the choice of the type of functions, we now have a further choice to make: what
kinds of polynomials we want, remembering that a certain amount of regularity will already be
imposed, depending upon the space in which we are seeking solutions. An obvious choice of
polynomials would be Lagrange or Legendre polynomials, but we have instead chosen to use
Lobatto shape functions, employed in [33, p. 25] and [40, p. 48]; this choice of basis functions

gives us a hierarchical basis set.

We begin by introducing the Legendre polynomials in one dimension as given by

Lo(ﬂf) = 1, (318)

Li(z) = =, (3.1b)
2n—1 n—1

L,(z) = " xLl, 1(z) — L, o(x), n> 2, (3.1¢)

page 24

Section 3 FEM Algorithms in C++

cf. [B3, p. 22]. We can also define the Lobatto shape functions by

lo(x) = ! ; x) (3.2a)
L(z) = ! JQF = (3.2b)

L(z) = \/n —1/2 / Lo 1(€)de, n > 2, (3.20)

cf. [33, p. 25]. We notice that Legendre polynomials are orthogonal, meaning that we have
f_lan(m) dx = 0,n > 1. This helpfully means that [,,(1) = 0,Vn > 2. We also notice by
definition that [,,(—1) = 0,Vn > 2, so the Lobatto shape functions vanish at both sides of the

domain forn > 2.

We have chosen to implement these Lobatto shape functions as our basis functions within

the Element class, which is described more in Section B.3.

We note that these functions are defined on [—1, 1], which will be the domain for our one-
dimensional reference element. For actual implementation, we can define the Legendre poly-
nomials relatively easily with the recursive formula given in Equation (3.), and we do so within
the quadrature namespace (mainly for ease when defining the Gauss-Legendre quadrature).
However, the definitions of the Lobatto functions are a little more tricky because of the integral

that appears in the definition. With this in mind we state the following result.

Lemma 3.1.

The nth, n > 2, Lobatto shape function can be written as

(z) = 2”2_ ! (Lnﬂ(x) - Lnl(x))

page 25

FEM Algorithms in C++ Section 3

Proof. By [33, eq. 1.43], we know that

Lal€) = 5 (Ensa () = Laa()).

d
d¢

Integrating this on [—1, z| gives

which, by our definition in Equation (B.2), is simply

Io(z) = /n — 1 /2<Ln+1(:v) - Ln_l(x)>.
Rearranging gives the desired result. L]

From Equation (B.J)) we can calculate Legendre polynomials generally, but not their deriva-
tives. The derivatives for n = 0, 1 are straightforward, but not for n > 2. Hence, we need
to determine how to compute the derivative of the Legendre polynomials for any order; this
is required for the proceeding hp-adaptivity algorithm. By following a proof by induction from

Lemma B.2 we can ultimately construct such a method.

Lemma 3.2.
The kth, k > 1, derivative of a one-dimensional Legendre polynomial of the nth, n > 2, order

is defined by

n

L™ (z) + (k — 1)2” — 1L(k_l)(x).

on—1 n—1 "2 n—1

Section 3 FEM Algorithms in C++

Proof. We first test for the base case (kK = 1). From this, we get

2n—1 n
n—1 xLly,_y(x) — n—

Ly (z) =

1 L;’L—Q (x)7

which is true by differentiating and rearranging Equation (3.1d) and employing

cf. the proof of Lemma B.1 (and [33, eq. 1.43]).

Let’s now assume that Lemma B.2 holds for some k& > 2, which is just

CIIC 2n—1 k n k 2n —1 k—1
rla(@) = el (@) = L% (1) + (k= DT L5 ().
Differentiating this again gives
dktt 2n—1d (k) N (k+1) 2n —1
sy n(7) = — £<$Ln_1($)> ol () + (k — 1)ﬁLn—l($)

By the product rule we may expand the differentiation into the first RHS term, giving

dk—i_1 2n—1 k k n k41 2n —1 k
L) = T (L @) + oL @) = L0 @)+ (k- DL, (@)
2n—1 k+1) n k+1) 2n —1 (k)
= L — L L

which gives the desired result.

By the principles of mathematical induction, we have shown that the lemma is true for the

base case and inductive case, and so we conclude that the lemma is true for all k£ > 1. O]

page 27

FEM Algorithms in C++ Section 3

Since the Lobatto shape functions are calculated by a linear combination of Legendre poly-
nomials (by Lemma B.T), we now have a method for calculating our basis functions of any or-

CETEENTIE VA LT\VE alola MU N N Eldglolel £ double Element:basisFunction(int n, int i)

in the Element class calculates any derivative of any order basis function, making use of the

f_double quadrature::legendrePolynomial(int n, int i) [ulcdsleleRIsResT-ReIiETehar-RAlEaS

namespace. Note that the Legendre polynomials and their derivatives calculated here are one

dimensional.

3.3 Elements

The element class was originally designed to be an abstract type, where children classes
could take various forms in various dimensions (for example intervals in 1D, or triangles or
squares in 2D, or tetrahedra or tetrahedra in 3D). Since Blakey FEM has been designed to solve
1D problems only, we have instead decided to make our element class a concrete class that

implements only intervals.

As well as creating a class named Element we also decided to create a class called Elements

which is essentially a wrapper for many Element instances. Both of these classes are described

in Figure B.3.

There are two constructors for this class: FRRSIERACAR I AANARS AN Which is a copy
constructor (and has same logic as the equals operator), and JHEE = A GR R AN-RN=) =) A\ [W RN

noNodes, vector<int> nodelndices, vector<double nodeCoordinates, int

LRI R ENREY-SIPM which provides the class with an element number, the number of nodes

for the element (although in 1D this will be fixed to 2), the indices of the nodes, a pointer to

the node coordinates vector, and the polynomial degree for this element.

The destructor of Element does not do anything special: but it certainly does not delete the
storage at nodeCoordinates, which belongs to the Elements container. N.b. the Element and

Elements classes actually perform very different functions in this implementation.

page 28

Section 3 FEM Algorithms in C++

Element

- elementNo : int

- noNodes : int
polynomialDegree : int
nodelndices : vector<int>
nodeCoordinates : vector<double>*

- init_Element(int elementNo, int noNodes, vector<int> nodelndices, vector<double>*
nodeCoordinates, int polynomialDegree) : void

+ Element(Element element)

+ Element(int elementNo, int noNodes, vector<int> nodelndices, vector<double>* nodeCo-
ordinates, int polynomialDegree)

+ Element()

+ operator=(Element element) : Element

+ mapLocalToGlobal(double xi) : double

+ basisFunction(int n, int i) : f_double

+ get_Jacobian() : double

+ get_elementNo() : int

+ get_noNodes() : int

+ get_nodeCoordinates() : vector<double>

+ get_rawNodeCoordinates() : vector<double>*

+ get_nodelndices() : vector<int>

+ get_elementQuadrature(vector<double> coordinates, vector<double> weights) : void
+ get_polynomialDegree() : int

+ set_polynomialDegree(int p) : void

Figure 3.3: Class structure for Element.

The method JeISISINREEE (NI ReX- N MNCIEaNe) LUNG IINRIS BB takes a point on the local domain

(on [—1,1]) and calculates where that point corresponds to on the global domain; in 1D this is
just a simple linear mapping f : [—1,1] — [z;_1, x;], where z;_; and z; are the node coordi-

nates.

The basisFunction method, as discussed in Section B.2, calculates the basis function on
the current element for any given degree and derivative. We note that the basis functions

remain on the reference element [—1, 1].

page 29

FEM Algorithms in C++ Section 3

3.4 Linear Solvers

Linear systems arise in various different areas, and are of particular importance computa-
tionally thanks to the methods that exist to approximate solutions to the systems. Directly
calculating an inverse to an N x N matrix can take O(N?) operations, so for large linear sys-
tems this could take a very long time. In practice we don’t need to find the explicit inverse and
can go straight to seeking a solution to the system provided we have a right-hand-side; however
other computational algorithms such as Gaussian elimination also take O(N?) operations [8,
p. 368]. For diagonal systems we can actually find a solution in O(/N) when we are dealing with

linear elements for FEMs in 1D, but higher-order FEMs no longer result in diagonal matrices.

We can therefore turn to iterative techniques, which can provide solutions to some given
accuracy. For large sparse systems (like the system resulting from our FEM calculations) the
conjugate gradient is generally a well-favoured method [8, p. 479]. We have therefore chosen
to use a conjugate gradient solver with some tolerance (usually set to 1 x 10~ *°) for solving all

linear systems that arise and is defined in

linearSystems: :conjugateGradient (Matrix<double> M, vector<double> b,
GEDINIR AN =Nl 9N. \We note that we could also make use of the Thomas algorithm for
solving diagonal systems arising from 1D linear FEM calculations; however we decided that

the performance boost for using a separate algorithm for solving a linear system for perhaps

only the first few iterations was seen as too small to justify proper implementation. We have

however implemented the Thomas algorithm in RgeEReEEERTERaS Al

thomasInvert (vector<double> lower, vector<double> diagonal

vector<double> upper, vector<double> load, vector<double> solution) [k
this wanted to be developed further in the future. The conjugate gradient algorithm is shown
in Equations (B.3), as defined in [6, p. 1605], where we choose dy = 7y = Axy — b. We

note that each x;, is our approximation of the solution, and the terminating condition for the

page 30

Section 3 FEM Algorithms in C++

algorithm is when r, - 7, is below some given tolerance (usually 1 x 10~%°).

Tpp1 = T + ady, (3.3a)
Td
ay = — kS (3.3b)
diy1 = Try1 + Brdy, (3.3¢c)
T Ad
By = — b1 20k (3.3d)

We have implemented the conjugate gradient method described above as done in [20], but
we note that we could have computationally implemented a better algorithm: one that per-
mits parallelisation. Computers in recent years have, for one reason or another, been geared to
having more cores than a faster processing clock speed [37]; however the standard conjugate
gradient algorithm is not suitable for these multi-core processors as each new direction (d;,) re-
quires the new residue (r},) to have been calculated [6, p. 1605]. We therefore could have used
the cooperative conjugate gradient method provided by Bhaya et. al to make use of the many
cores and threads in a central processing unit, but for the purposes of this project we will just
use the regular conjugate gradient method as the 1D simulations aren’t too computationally

demanding.

We note that to solve our linear systems above we need a Matrix data structure, as matrices
are not built-in to the programming language — this is due to use cases for matrices widely
differing from programmer-to-programmer. We have therefore implemented our own class
hierarchy to store matrix details relevant to our problems, as shown in Figure B.4. The Matrix
class is itself abstract, and its descendant classes implement many of its method. We have
implemented a child class called Matrix_full which stores the matrix elements in a single
vector, items, whereby the index at which an element value is stored is calculated relatively

easily from two coordinate values; this is akin to the approach taken by the creator of C++,

page 31

FEM Algorithms in C++ Section 3

Bjarne Stroustrup, in his comprehensive guide to the language [35, p. 831] to minimise storage

required.

Now that we have this generic structure for our matrix classes, it would be relatively easy to
add a sparse matrix data structure, say Matrix_sparse, with a method like compressed sparse
row format [31, p. 93]. For large sparse matrices, this method aims to reduce the total amount

of storage needed in computer memory.

We also notice that the Matrix class and its descendants are implemented generally for a
type, T, using C++’s templates feature. We have chosen to do this for several reasons: firstly,
this allows a single implementation of a matrix for any given type — for example, a matrix of
type double or int; secondly, this approach reduces redundancy of code and allows features
for all types of matrix to be added with relative ease; and thirdly, this approach saves on both

runtime and space efficiency [35, p. 665].

3.5 Nonlinear Solvers

Later in the report, in Section [, we introduce a nonlinear model problem (rather than a linear
problem). We need a nonlinear solver to solve the resulting nonlinear system. Although not the
primary concern for this stage in the report, it’s important that we cover the implementation
side of this problem. We have chosen to implement a Newton solver for this solving process,

thanks to its quadratic convergence rates close to roots [36, p. 119].

By explicitly calculating the necessary function and derivative needed for our nonlinear prob-

[T VIRV AN e i e TeidaTeTolg) vOoid Solution _nonlinear: :Solve_single(double

cgTolerance, vector<double> uPrev, vector<double> uNext, double difference) |

This performs one Newton step, which we can run multiple times in the

Solution_nonlinear: :Solve(double cgTolerance, double NewtonTolerance,

\ZYoades e [NR-BRI DN to find a root within a certain specified tolerance.

page 32

Section 3 FEM Algorithms in C++

Matrix «abstract»

[NO DATA]

resize(int noNonZeros) : void
item(int x, inty) : T

+ get_noRows() : int

+ get_noColumns() : int

+ get_diagonal() : vector<T>

+ set(int x, int y, T value) : void

Matrix_full

#items: T

noColumns : int

noRows : int

resize(int noNonZeros) : void
get_index(int x, int y) : int

item(int x, inty) : T

+ Matrix_full(int N)

+ Matrix_full(int noColumns, int noRows)

+ Matrix_full(int noColumns, int noRows, T initial)
+ Matrix_full(Matrix M)

+ get_noRows() : int

+ get_noColumns() : int

+ set(int x, int y, T value) : void

Figure 3.4: Class structure for Matrix and its descendants.

3.6 Quadrature

All FEMs will need to (at some point at least) find the value of the one-dimensional definite

integral

0= s

We are interested in finding numerical methods that yield accurate approximations to 7 [12].
We call the numerical approximation to a definite integral a quadrature method, and we will in

particular consider quadratures of the form
L(f) = wif(x:),
i=1

where we call w; the quadrature weights and z; the quadrature points for i € [1, n|y.

page 33

FEM Algorithms in C++ Section 3

Gaussian quadrature gives us the best choices of weights and points for approximating the
integration of a function of one variable numerically on an interval [BQ]; Gaussian quadrature
can also be derived for integration of functions in more than one dimension (useful in multi-

dimensional FEMs), but we will restrict ourselves to considering one dimension.

We define Gaussian quadrature of order n, n > 1, as done in [33], and more universally
known as Gauss-Legendre quadrature. By taking L,, to mean the nth order Legendre polyno-
mial as defined in [B3, p. 22] (c.f. Section B.2), and noticing that L,, has n zeros, we define the

1th Gaussian weights and points given by:

fn,i s.t. Ln(é.n,z) = O, (343)

2
Wn,; =

A=)

To allow for exact integration of polynomials of a chosen degree, we need to be able to

calculate these points and weights for any given n. Therefore, Blakey FEM implements:

Ml f double quadrature: :legendrePolynomial(int n, int i) SNVl R{Vlsles

tion pointer to the ith derivative of the nth-degree Legendre polynomial;

(Ml void quadrature: :legendrePolynomialRoots(int n, vector<double> roots)

— populates roots with the n roots of the nth degree Legendre polynomial by a Newton

method within a residual tolerance of 10~°;

double quadrature: :get_gaussLegendrePoint(int n, int i) EgSIlIRGIR]

Gaussian point of nth order;

double quadrature: :get_gaussLegendreWeight(int n, int i) [EelgSIgNIE]

1th Gaussian weight of nth order.

Since the root finding of the zeros of the Legendre polynomials are relatively expensive, we

also have an intelligent cache built-in to the code so that no point or weight is generated more

page 34

Section 3 FEM Algorithms in C++

than once — when calculated for the first time they are stored in a dictionary data structure.
Whilst this has an immediate computational penalty with the lookup of various values in the
dictionary, it is a much lower cost than computing the points and weights. It is so vital in de-
creasing the runtime of the program because the roots of these polynomials are found using a

Newton method, which may take a large number of iterations to converge.

3.7 Object-Oriented Design

Figure B.5 highlights the main class diagram of this implementation, in particular highlighting
the structure rather than the specific syntax usage — we have therefore omitted arguments and

their types, as well as const-ness, as these don’t inform the structure of our code too much.

Note that we show inheritance with open triangle-headed arrows, one-to-one association
with closed triangle-headed arrows, and one-to-many association with open diamond-headed
arrows (in accordance with industry standards [1]). We denote private members with '#’, pri-
vate members with ’-’, and public members with '+. These access attributes give our code
some protection to illegal usage, whereby a user may only interact with our classes with public
members. We also denote abstract methods with italics, and make a note of abstract classes

next to their class name.

To calculate a solution to a problem, the user needs only to instantiate instances of Mesh and
Solution (with their relevant arguments), and all instances of other classes are created within

these if necessary.

During the creation an instance of Mesh, they can either provide an Elements instance with
various Element s pre-populated, or they may simply provide a number of equally-spaced el-
ements they want in that Mesh. This Mesh can then be then be passed to the Solution con-
structor, with other problem details. To calculate a finite element solution, the user may call
the Solution: :Solve method, from which Solution: :output_solution() may be called

to output the solution to a data file. This data file can then be used to plot the values of the

page 35

FEM Algorithms in C++

Section 3

finite element solution again the x-axis.

Solution «abstract»

noElements : int

solution : vector<double>

mesh : Mesh*

linear : bool

compute_uh() : double

get_higherOrderDoFs() : vector<double>

+ Solve() : void

+ compute_norm2() : double

+ compute_L2NormDifference2() : double

+ compute_H1NormDifference2() : double

+ compute_EnergyNorm2() : double

+ compute_energyNormDifference2() : double
+ compute_errorindicator() : double

+ compute_errorindicators() : vector<double>
+ compute_globalErrorindicator() : double

+ compute_smoothnessindicator() : double

+ compute_smoothnessindicators() : vector<double>

+ get_linear() : bool
+ output_solution() : void
+ output_mesh() : void

Solution_linear

- f: f_double
- epsilon : double
- c: f_double

- a() : double

-1() : double

- compute_residual() : double

+ Solution_linear()

+ Solution_linear()

+ Solve() : void

+ compute_energyNormDifference2() : double
+ compute_errorindicator() : double
+ get_f() : f_double

+ get_epsilon() : double

+ get_c() : f_double

Solution_nonlinear

- f: f_double2
- f_: f_double2
- epsilon : double

- a() : double

- 1() : double

- compute_residual() : double

- compute_modifiedResidual() : double
+ Solution_nonlinear()

+ Solution_nonlinear()

+ Solve() : void

+ Solve_single() : void

+ compute_energyNormDifference2() : double
+ compute_errorindicator() : double

+ compute_epsilonNorm() : double

+ get_f() : f_double2

+ get_epsilon() : double

+ get_f () : f_double2

Mesh

- noElements : int

- noNodes : int

- dimProblem : int

- ownsElements : bool
+ elements : Elements*
+ Mesh()

+ Mesh()

+ get_dimProblem() : int
+ get_noElements() : int
+ get_noNodes() : int

Elements

- noElements : int

- elements : Element**

- nodeCoordinates : vector<double>

- startDoFs : vector<double>

+ Elements()

+ Elements()

+ get_noElements() : int

+ get_elementConnectivity() : vector<int>
+ get_elementDoFs() : vector<int>

+ get_nodeCoordinates() : vector<double>
+ get_rawNodeCoordinates() : vector<double>*
+ get_DoF() : int

+ get_polynomialDegrees() : vector<int>
+ calculateDoFs() : void

Element

- elementNo : int

- noNodes : int

- polynomialDegree : int

- nodelndices : vector<int>

- nodeCoordinates : vector<double>*

- init_element() : void

+ Element()

+ Element()

+ mapLocalToGlobal() : double

+ get_Jacobian() : double

+ basisFunction() : f_double

+ get_elementNo() : int

+ get_noNodes() : int

+ vector<double> get_nodeCoordinates()
+ vector<double>* get_rawNodeCoordinates()
+ vector<int> get_nodelndices()

+ get_elementQuadrature() : void

+ get_polynomialDegree() : int

+ set_polynomialDegree() : void

Matrix «abstract»

[NO DATA]

resize() : void

#item() : T

+ get_noRows() : int

+ get_noColumns() : int

+ get_diagonal() : vector<T>
+ set() : void

Matrix_full
#items: T

noColumns : int

noRows : int

resize() : void

get_index() : int
#item(): T

+ Matrix_full()

+ get_noRows() : int
+ get_noColumns() : int
+ set() : void

Figure 3.5: The rough object-oriented design of Blakey FEM.

Figure B.g outlines the structure of the namespaces used in this implementation, which again

omit the arguments for simplicity. In general, the namespace names correlate to their purpose.

The common namespace holds some methods that are included in every implementation
file; these methods are methods that need to be used frequently across different classes and

namespaces, so it made sense for them to be defined once in their own separate namespace.

Methods concerned with refinement are defined in the refinement namespace. In general,

page 36

Section 3 FEM Algorithms in C++

one would make a call to eitherrefinement: :refinement () orrefinement: :refinement_gQ),
which respectively describe refinement and global refinement. The choice of refinement method

at each step is chosen by the choice of flags in the arguments for these methods. The
refinement: :refine_hp(),refinement: :refine h(),andrefinement::refine p(Q) re-
spectively define individual steps of the hp-, h-, and p-adaptive refinement processes, and will
usually only be called from the former refinement processes. The namespace is structured such
that one of the individual refinement steps will take an old Solution and old Mesh, and give a
new, refined Solution and new, refined Mesh. More of the implementation details for these

processes are given later in Algorithms B.1-4.4.

The implementations of linearSystems and quadrature are discussed in Sections 3.4 and

B.6, respectively.

common
+ addFunction(f_double, f_double) : f_double

+ constantMultiplyFunction(double, f_double) : f _double
+ [2Norm(vector<double>, vector<double>) : double

+ multiplyFunction(f_double, f_double) : f double

linearSystems

+ thomaslnvert() : vector<double>
+ conjugateGradient() : vector<double>
+ dotProduct() : double

quadrature refinement

+ legendrePolynomial() : f_double + refinement_g() : void
+ legendrePolynomialRoot() : double + refinement() : void

+ legendrePolynomialRoots() : vector<double> + refine_hp() : void

+ get_gaussLegendrePoint() : double + refine_h() : void

+ get_gaussLegendreWeight() : double + refine_p() : void

Figure 3.6: The namespaces available in Blakey FEM.

We note here that the base class Solution and its descendants, Solution linear and
Solution_nonlinear, are at the heart of the solving process of the finite element algorithms.
See Appendix A for a more detailed discussion of how these classes use the data to solve the

problems.

3.8 Simple Numerics

Now that we have an implementation of a finite element solver, we may test it with a few

example problems and see what results we have. Let us first consider a boundary value problem

page 37

FEM Algorithms in C++ Section 3

on Q = [0, 1], where we seek a solution, u € H'(Q), such that

—0.001u" +u =1,

where u(0) = u(1) = 0. This fits our model problem from Section by setting ¢ = 0.001,
f=1andc=1.

We first solve some simple examples on this domain for equally-sized linear elements across

the entire domain, as shown in Figure B.7.

Boundary Example with 4 Linear Elements Boundary Example with 8 Linear Elements
1.24
1.0
1.0
0.8
0.8 1
0.6 4
=1 0.6 1 =]
0.4+
0.4 4
0.2 4 0.2 4
—— Approximation —— Approximation
0.0 4 — Exact 0.0 4 — Exact
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
Boundary Example with 16 Linear Elements Boundary Example with 32 Linear Elements
1.0 4 1.0 4
0.8 1 0.8
0.6 1 0.6 4
=1 =]
0.4 4 0.4
0.2 4 0.24
—— Approximation —— Approximation
0.0 4 —— Exact 0.0 4 —— Exact
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.7: Plots for the example boundary layer problem for varying element sizes.

We see that, as the number of elements increases, the solution visibly gets more accurate.
But there is more to this than that: we notice that with 8 linear elements, there is an unde-
sirable overshoot in the approximation near the boundaries, but the plateau in the centre of
the domain is already a good approximation of the solution. As we increase the number of

elements we use for the approximation, we are increasing the elements across the plateau for

page 38

Section 3 FEM Algorithms in C++

seemingly no reason. It may be beneficial, for example, to only reduce the size of elements
in areas where the higher resolution is needed. We will see in Section @ that we can compute
indicators capable of telling us exactly where these regions are, and allow us to get a better

approximation with fewer elements.

We could instead increase the polynomial degree on elements, which could lead to some ex-
ponential convergence rates [[18]. We've plotted quadratic and cubic elements for 4 and 8 ele-
ments in Figure B.§. We note once again that the higher polynomial degrees across the plateau
(where the exact solution is roughly constant) are mostly unnecessary, and better approxima-

tions of the solution mostly come from the higher polynomial degrees near the boundary.

Boundary Example with 4 Quadratic Elements Boundary Example with 8 Quadratic Elements
1.0
1.0 1
0.8
0.8 1
0.6 4
0.6 1
E} El
0.4 4
0.4
0.2 0.2 4
—— Approximation —— Approximation
0.0 4 —— Exact 0.0 4 —— Exact
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
Boundary Example with 4 Cubic Elements Boundary Example with 8 Cubic Elements
1.04
1.0 4
0.8
0.8 1
0.6 0.6 1
=1 =]
0.4 0.4
0.2 4 0.2 4
—— Approximation —— Approximation
0.0 4 — Exact 0.0 4 — Exact
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.8: Plots for the example boundary layer problem for varying element sizes and varying polynomial de-
grees.

To try out more simple examples, you may visithttps://fem.blakey.family where a sim-
ple version of Blakey FEM is running, allowing you to compute some of your own solutions. In

particular you can try 3 different pre-set examples in the bottom-left of the page: one that pro-

page 39

https://fem.blakey.family

FEM Algorithms in C++ Section 3

duces the boundary layer solution like above, one that produces a sinusoidal solution, and one
that produces a quadratic solution. By varying the number of elements we can see improve-
ments in the solution or deteriorations in the solution. A small shortcut allows mixed-sized
element meshes by entering a negative number of elements to the input, which can show in-
teresting local convergence properties. This will give roughly twice as many elements to the
left-side of the domain as on the right-side. You may also visit the GitHub repository, given on

page 2, to compile and run the code yourself.

page 40

Section 4

A Posteriori Error Estimation and Adaptivity

A priori error bounds only go so far for giving us error estimations, as in real-world models
we’re unlikely to know the exact solutions. In some situations we may be able to use optimal
solutions [15], or use a priori error bounds on model paramters [4]. However, for real world
applications of finite element methods for solving PDEs, it may be that we cannot take reason-
able guesses at the solution. After all, why would we be solving for a solution that we already

know?

In general for an a priori bound, we have a bound of the form

where ||-|| denotes a suitable norm and the bound, &, depends upon the element size, h,
the polynomial degree on that element, p, and — crucially — the actual solution, u. It would
be far better to derive computable error bounds that depend instead upon the finite element
approximation of the solution, u;,, so that we can calculate the bound even when we don’t know
the exact solution. We will introduce such bounds in this section, referred to as a posteriori

error bounds, which take the form
HU - U’h” S 62(h7p7 uh)7

and therefore depend on our numerical approximation, wuy,.

FEM Algorithms in C++ Section 4

4.1 A Posteriori Error Estimation in 1D

When numerically solving real-life problems (such as computational fluid dynamics, elastic-
ity, or weather prediction problems) we may find that the overall accuracy of the numerical
approximation is degraded by local singularities; a remedy to this problem is to locally refine
around areas where the approximate and analytical solution differ the most [39]. When work-
ing with test problems (e.g. —u”(x) = sin(x)) we know the analytical solution and can there-
fore immediately see where these areas are; however, in most practical situations the analytical

solution is not known and we can’t do this.

For finite element methods, there exist a posteriori error estimates (error estimates without
knowing the analytical solution). We will derive such an error estimate for our model problem

in Equation (2.4) in this section, mostly following the results from Schwab [32] as a guide.

We firstly define the energy norm, which is the norm in which we will measure our error and

error estimates.

Definition 4.1 (Energy norm, [25, p. 55]).
The energy norm is defined as

[ullp = alu, u),

where a is the usual bilinear functional from our FEM.

In 1D, we may consider domain €2 := (a, b) and finite element space
Vi :={u € H"(Q) : u|(@; 2 € Pr(xi1,7;)Vi € [1, N]n}.

We ultimately want to prove that there exists an a posteriori bound on ||u — u|| , but we first

need to prove some preliminary results.

Let () := [—1, 1] be the one-dimensional reference element. Then we know by [32, eq. 3.3.3]

page 42

Section 4 FEM Algorithms in C++

that, forany u € LQ(Q), we may write u in the form of an expansion of Legendre polynomials:

u(€) =Y a;Li(§), (4.1)
=0

where

2i+1 [!
e IGLGLE

and {L;}$°, are the family of Legendre polynomials, as defined in Section B.2. We note that
the Legendre polynomials satisfy

! 2
| L@L€ s = 5, (4.2)

where §;; denotes the Kronecker delta.

We may employ Equation (#.2)), noting Equation ({.1)), to deduce the following Parseval iden-

tity, as stated in a similar form by Schwab [32, eq. 3.3.14]:

o0

2
2

i=1

More generally, the following lemma holds.

Lemma 4.1 ([B2, lem. 3.10]).
Givenu € H ’“(Q), k > 0, defined by Equation (#.1), then the following (generalised) Parseval
identity holds:

! = 2 (i+k)!
(k) _ — .
/ (P - g d = Z =Ry

Proof. Firstly, we show that the following relation holds:

1 .
e\ ey ge — 2 TR
| G-l - g s 43)

To prove Equation (f.3)) we first note that Legendre polynomials are a special case of the

page 43

FEM Algorithms in C++ Section 4

Jacobi polynomials

{Pi(& o,)10

cf. [38, p. 58]. In particular the Jacobi polynomials satisfy the orthogonality property:

/_ (1— 6°(1+ P& v, B)Py(E;) dé

1
. (4.4)
2o Pla+ 1+ 9l(B+1+ @) 0 B>
2+ 1+a+ BTG+ D) a+ B4+ 1+10) O3 0
where I'(-) denotes the gamma function.
Moreover, we note that
L+ k)]
) = e (kb k2 (4.5)

Hence, using both Equation (#.4)) and (§.5) gives

/_ (1 -) L0 (€)1 (¢) de

1

1 4+ E) (5 + k)
- [a-o0a+o® U e 6k Py wes k) de

-1

[+ k)12 22k L@+ +1) 5.
S22 2%+ 1T (i —k+)G+ k1)
Gk 22 g it

22k[i1|2 24+ 1 (i — k) (i + k) ¥
2 (i+k)!
T 211 (2 k)! e

hence, we deduce that Equation (#.3) holds.

page 44

Section 4 FEM Algorithms in C++

To complete the proof of the lemma, we note that

/ (1— &) u® ()] de

1

/ SEPIECIN

=Y a, / (1 -) L0 LO () de
5=k

2 (G+kR)!
= E ; ; |Clz‘| s
— 2i+1(i —k)!

where we have employed Equation (&.3). O

With these results, we now consider the construction of a suitable projector 7, : LQ(Q) —
PP(Q), where PP(Q) denotes the space of polynomials of degree less or equal to P, P > 0.

To this end, we state the following result.

Lemma 4.2 ([32, eq. 3.3.14]).

For every u € L*(Q) we have that

[V

: =~ 2
inf lu—vl[p2q) = [Z %—H@i|2]

vEPp(Q) i=p+1

Proof. Letv € PP(Q) be any polynomial of degree P, P > 0, then

for a given set of coefficients {b;}/_,. Then employing Equation (&.2%) gives

P

2 2 2
=l = 2 gyl — bl + ZQH

i=P+1

Hence [[u — v|| ;2 will be minimised when b; = a; for i € [1, Py, and we have our result.

page 45

FEM Algorithms in C++ Section 4

Remark 4.1.
As we would expect, the function v € Pp(S2), which minimises the norm ||u — v|| (@ Is in fact

the LQ(Q)-projch’on of u onto PP(Q).

Based on previous results, we may derive an approximation result. However, we first, for

J €[0,k]n, k € N, define
Vyk(Q) ={ue L}(Q): |U|vjk(()) < oo},

where
k 1
e =3 [- EVOR de
=3 v
akin to [B2, eq. 3.3.10].

Note that for j = 0, | - [;/» o) is @ norm, but only a semi-norm for j > 0.
J

Theorem 4.1 (Similar to [32, th. 3.11]).

Givenu € Vi (Q), k > 1, the following approximation result holds

1
) (P + 1-— S)':| 2)
|nf S |i— |u s(O) 3
vePp(@flu—vl2y . ~ L(P+ 1+ 8)! V()
for s € [0, min(P + 1, k)]n.
Proof. Employing Lemma gives
inf |lu— v = i 2 |a;|?
vePp(Q) P A 2i 41
B i '2 |ai‘2(§ + s)! (z —3)!
2+l (i —s) (i +s)!
(P+1-5)! i 2 (i—s)
T (P+1+s !i:PHQi—Fl(i—i—s)!

page 46

Section 4 FEM Algorithms in C++

by Lemma [.1], as required. O

For the purposes of the a posteriori error estimation, we require an alternative approxima-

tion result, which we will now develop in a similar way.

Theorem 4.2 ([B2, th. 3.14]).

Given u € H' () there exists myu € Pp(Q) such that the following hold:

mpu(£1l) = u(£1), (4.6a)
' = (mn) 720y = So SN (4.6b)
h L2(Q) — — 2% + 1 AR .
Py < / e mu) pe 2

Here, {b;}3°, are the Legendre coefficients of i/, i.e.,

2i+1 (!
by — Z; /_lu’(g)Li(f)dg,ieN.

Proof. (B.6d) Firstly, we write (m,u)’ to be the truncated Legendre series expansion of v/, i.e.,

and define

Hence, by definition of mu(—1) = u(—1).
page 47

FEM Algorithms in C++ Section 4

Moreover,
1
m(1) = [(o) () + u(-D
-1
= Qbmhu(—l)
Hence,
7rhu(1) — 7rhu(—1) = 2b0

Similarly,

Thereby, given that 7,u(—1) = u(—1), we deduce that w,u(1) = u(1), and hence Equation

(£.64d) holds.
(B.6H) This follows immediately with Lemma [.1].

(B.6d) First consider the following, where we have applied Equation (%.6d):

13 13
u(€) — mu(€) = / () dn — / (ms) () i

-1 -1
é’ o
— [S nLtman
“Li=p
=) _bahi(§), (4.7)
=P

Section 4 FEM Algorithms in C++

We recall that the Legendre polynomials satisfy the ODE problem:
(1=)LL) +i(i+ 1)L;(€) =0, in O,

fori € N, by [38, th. 4.2.1].

Rearranging gives
((1—&)Ly)

> 1
v '

Y

and integrating gives

3
i [=y

Hence,

[Hanenei= [A tsa-anened
1 2 (i+1
[i(i+1)]220+1(—1)!
2 1 (i+1)ii—1)!
2+ 142(i+1)2 (i—1)!
= 2 S
i(i+1)(2i+1) 7

s,

(4.8)

Employing Equations (£.7) and (£.8) gives

/ u€) — myul€) [dé < / #@ ul(€) — myu()]? de

- / (Z biwi(@)Q é

oo

=> |b;
i(i 4 1)(22+1)

i=P

| 2

)

page 49

FEM Algorithms in C++ Section 4

as required. O

From Theorem [.6, we now derive the following approximation result.

Corollary 4.1 ([32, co. 3.15]).
Letu € H'(Q) N VF(Q), k > 1. Then the following bound holds:

I =)l < |
where s € [0, min(P, k)]x.

Proof. From Equation (#.6B8) from Theorem [.2,, together with the proof of Theorem §.7, gives

o0

as required. O]

For the purposes of the proceeding a posteriori error analysis we consider a particular case
of Theorem [.2, applied to an individual element, x; = [x;_1,2;], 7 € [1, N]n. To this end,

consider the following element mapping:

Note the slight change of notation, where we can write

w(§) = uo F().
page 50

Section 4 FEM Algorithms in C++

We may now introduce the following theorem as the linear approximation result that we will

use.

Theorem 4.3 (1D linear approximation result, [32, p. 145]).

Ifue H' (k;),i € [1,n]y, and mpu(x;) = u(x;) fori € [0, nly, then Iu € V}, s.t.

xZ; 1
-1 2 2
/xil w; (U - 7Thu) dz < m”u ||LQ(H1_)7

where w; = (z; — x)(x — z;_1).

Proof. From Equation (#.6d) from Theorem [.2, we have

Ya—-mt)? | o 2 2
/_1 1— &2 dg_;z(z+1)(2z+1)|bl|

IA

(P—s)! 1 2 (i+9)!,
(P+s)'P(P+1)Z il

Employing Lemma [.7 gives

b (0 — mpit)? (P—s) 1 L2 2\
/_1 1-¢ ng(P+s)!P(P+1)/_1|u TR - ghde.

and hence

To see this, we note that
2r — (l’l + .7}2'_1)
Ty — Tij—1

page 51

FEM Algorithms in C++ Section 4
and therefore
1_ 52 _1_ (2512' — (CCZ —+ .171;1))2
(%‘ - 1’171)2
_ (i — 1) — (20 — (v +24-1))?
(l‘z‘ - Ii—1)2
A —x)(r—250)
N (xz xi—l)z ‘
We may now set s = 0, which gives
x; 1 dl’
/ w; (u — mpu)? do = / (4 — mpt)*w; == d€
Ti_1 -1 d§
1 -1
1 5 | dz
= —— (0 —)" | — d
[t mar] e
1 dz]7 ' !
< | — 0?2 dE.
< e a0
Now
u = u,
| dx -1
= U _—
3 d¢
_ dz] ™"
= ac
Thus,
1 dz] ™t [dz]? d¢
w; N u— mu)?de < ——— l—] / (u')? [—] — dx
/Ii1 P(P+1) |d¢ . d¢| dx
= ol
P(P"— 1) L2(‘Zi*1»xi)7
and noting x; = [x;_1, x;] we are done.
]

page 52

Section 4 FEM Algorithms in C++

For the following theorem’s proof we also make note of the Galerkin orthogonality property,

as stated in [25][eq. 1.35].

a(u — up,vy) = 0,V € Vj,. (4.9)

We also make the following definition of the residual.

Definition 4.2 (Residual).

For one-dimensional version of the model problem given in Equation (2.4)), we have the residual:

R(u)

o= f+eu” —cu, i€ [1,n]n.

(zi—1,24

We will now state and prove the main theorem providing an a posteriori error bound.

Theorem 4.4 (1D a posteriori error bound).

Ifu € H'(Q) and u satisfies Equation (2.4), then

N 1 9

1
|u —up| g < Z mgng/zR(uh)‘

i=1 "~ °

LQ(xi—lyxi)7
where ||-|| ; denotes the energy norm, P is the element’s polynomial degree, w; is defined as

in Theorem and wy, is our approximation of the solution defined in Equation (2.6).

Proof. We note that Equation (2.4) tells us that

—eu"(x) + c(x)u(z) = f(x),z € (0,1)

with u(0) = u(1) = 0.
page 53

FEM Algorithms in C++ Section 4

The problem’s weak formulation is, as written in Equation (5.2), find u € H}(0,1) s.t.

a(u,v) = l(v), Yv € Hy(0,1),

Projecting our problem to the finite-dimensional space, as shown in Equation (2.6), we have
to find uy, € V}, s.t.

a(uh,vh) = l(vh)VUh € Vh.

By working from the definition of the energy norm, we get:

= unl|s = alu — up, u — up).

By defining e := u — uy, and using Galerkin orthogonality (Equation (#.9)) in the second

argument, we get

lu — unl|fy = alu — up, e)

= a(u — up, e — pe).

By linearity we may split up the terms in the first argument to give

' — un|% = a(u, e — mhe) — alun, e — The).

We now substitute the model equation (Equation (2.4)) into the first term to give

page 54

Section 4 FEM Algorithms in C++

[u — un|% = (e — mhe) — a(up, e — mhe)

= /0 [f(e — mne) — euj (e — mhe) — cup(e — mhe)| da.

Applying integration by parts elementwise and noting the vanishing boundary conditions by

Theorem (.3 gives

= up % = Z/ fle —mhe) + euj (e — mhe) — cup(e — mphe) d€]

- Z/ i (f + eup, — cup)(e — mphe) dE.
i=1 Y %i-1

By using the definition of the residual in Equation (#.2), we have

||u—uh||E Z/))(e — mpe)dx
Z/ Z 1/2 uh))w;1/2(e—7rhe)da:,

where w; := (x; — z)(x — z;_1).

Using the Cauchy-Schwarz inequality gives

page 55

FEM Algorithms in C++ Section 4

[— un |3 < Z\// w;(R(up) de\// e — mpe)2dr

— Z Hwil/QR(\// (e — mpe)2dz.
i=1 Iz 1,%5)

Applying our error bound in Theorem .3 we have

N
lu—unlly < |[wi?R(un)

12

e
BB+ 1)1 e

i=1 (i—1,7;)
al 1
_ 1/2 1/2,.7(|2
—ZMMWH_LWHWWMW>
=1 (T;—1,%;)
Al 1
_ 1/2 1/2
= w;" " R(up) € PP
Applying the Cauchy-Schwarz inequality, we have
N N))
_ 2 179 1112 1/2
o=l < | ey D S el)

N
1 / 2
= ||51/2 /HL2 0,1) ;m”wll 2R(uh) .

2
(z4—1,24)

1/2,.7]|2

¢ ”LQ(OJ) + Hcl/QeHi?(o,l) = HEl/Qe/H;(OJ)' we have

Noticing that |||, = e

page 56

Section 4 FEM Algorithms in C++

N
2
) 1/2
lu —un|lz < llell g ; epi(p Hw R(Uh)‘ Las_v.0)
N / 2
1 2

(xj—1,%4)

=1

By dividing through by the norm of the error in the energy norm, we further simplify to

2

2
(@i—1,%;)

N
U—Uu < Z
= unlls < 4| D -

w; R ‘
P plmelH 2

which gives the desired result.

Since each term in the sum is dependant only on the properties of a single element, say «;,

we also make the further definition of

NorEy]

Ny =
V Epl pZ + 1 (xz_l,xi)

as the element or local error indicator so that we can further write

page 57

FEM Algorithms in C++ Section 4

We will then write this upper bound as

g(uhu hap> =

which will be referred to as the global error indicator.

4.2 Example Problems

We introduce here some model problems that will be used for numerical experiments with

the h-, p-, and hp-adaptive algorithms in Sections #.3-4.5.

Problem 4.1.
A sinusoidal example, for which the solution the solution is very smooth. The problem has the
exact solution

u(x) = sin(27mz).

The data is set on Equation (2.4d) as ¢ = 1, f = 4x?sin(27z), and ¢ = 0.

Problem 4.2.
A boundary layer problem, exhibiting boundaries near x = 0 and x = 1, as given in [42, ex. 2]

with the exact solution

exp(z/ve) exp(=x/\e)exp(1/Ve)

ul(@) = Cexp(l/ye) +1 exp(1/y/€) +1

+ 1.

The data is set on Equation (24d) ase = 1073, f =1, and c = 1.

Problem 4.3.

A problem exhibiting a shock, as given in [42, ex. 4] with the exact solution

u(z) = arctan(100(x — 1/3)) + (1 — x) arctan(100/3) — z arctan(200/3).
page 58

Section 4 FEM Algorithms in C++

The data is set on Equation (R.4d) ase =1, f = u?ﬁﬁ%, and ¢ = 1. Again, we note

that f is just —u" + w.

4.3 h-adaptivity

This section will be dedicated to looking at strategies to adaptively change the mesh locally

in order to reduce the energy norm error of the solution.

We need an algorithm that will instruct us on how we will construct successive meshes, each
more refined than the previous. We will use a modified version of the algorithm described in
[39, p .68] by Verfirth, which is given in Algorithm [4.1]; this algorithm has T,’f as the kth mesh,
uf as the finite element solution on 7F, and 7, as the individual element indicators and & as
the global error indicator, c.f. the end of Section f.3. The underline on the word “refine” is
because we need to do something further — how do we deem elements as big contributors to
the global error, and then how do we construct the subsequent refinement to the mesh and

solution?

Algorithm 4.1: Refinement

Create initial mesh, 77;

Compute initial solution, u?;

Compute all n,, and &;

k<« 0;

while £ > TOL do
Refine mesh and solution, giving
Solve uf on 75;
Compute all 7, and &;

k+—k+1

k+1,

k+1
7, and u, " ;

For h-refinement, as described in [5, p. 748] and [41, p. 772], our aim is to make the error
uniform across all elements. By the strategy outlined in [23, p. 18] we will choose to refine all
those elements with local error indicators that are greater or equal to one third of the largest
local error indicator. Algorithm [.2 outlines how we have implemented this, where the algo-
rithm takes the current mesh, current solution, and error indicators for all elements as inputs;

and then returns a refined mesh and solution.

page 59

FEM Algorithms in C++

Section 4

Algorithm 4.2: h-refinement

Input

tThy, Uh, Mk

Output: 777, up®"
forall < do

if 7, > maxmn, /3 then

| Split element in half and add both these elements to 7,

else
| Copy element from 73, to 77"

4.3.1 TestProblem1

For Problem 4.1, we may apply the above algorithms adaptively refine the mesh to provide

more accurate solutions.

By initialising 79 to have 4 linear elements, and allowing the algorithm to run, we get the

results shown in Figure 1.1 for the first 3 h-adaptive steps.

1.00 1

0.75 1

0.50 1

0.25 1

> 0.00 A

—0.25 1

—0.50 1

—0.75 1

—1.00 1

1.00 4

0.75 1

0.50 1

0.25 1

> 0.00+

—0.25 1

—0.50 1

—0.75 1

—1.00 1

Test Problem 1 with 0 h-Adaptive Steps

—— Approximation

—— Exact

0.0 0.2 0.4 0.6 0.8 1.0

X
Test Problem 1 with 2 h-Adaptive Steps

—— Approximation

— Exact

0.0 0.2 0.4 0.6 0.8 1.0

1.001

0.75 1

0.50 1

0.25 1

S 0.004

—0.25 1

—0.50 -

—0.75 1

—1.00 4

1.00 4

0.75 1

0.50 1

0.25 1

> 0.00 A

—0.25 1

—0.50 4

—0.75 1

—1.00 4

Test Problem 1 with 1 h-Adaptive Step

—— Approximation
— Exact

0.0 0.2 0.4 0.6 0.8 1.0

Test Problem 1 with 3 h-Adaptive Steps

—— Approximation
— Exact

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.1: h-adaptivity on Problem {1,

page 60

Section 4 FEM Algorithms in C++

We see that the initial mesh with four linear elements is not very good at approximating
the exact solution (and in fact ||u — u||; = 1.93 here). The first step of the refinement algo-
rithm automatically marks all elements for refinement, resulting in a mesh with eight elements,
which is again a better approximation of the exact solution. Figure shows both the energy
norm between the exact and approximate solutions (||u — uy|| ;) as well as the error indicator
(€(up, h, p)) against the degrees of freedom for the first 15 h-refinement steps. We can see
that the error is reducing at some polynomial rate — and is importantly staying under the error

estimator, since it is an upper bound.

Test Problem 1 h-Adaptive Error

1009 -
a -1
5 10
o
10—2 i
| —e— Energy error
1 —@— Error estimator

10! 102 103
DoF

Figure 4.2: h-adaptivity convergence rates on Problem {.1.

This means that refinement is working at reducing the error, but how does the efficiency of
this compare to global refinement? We can see in Figure .3 that the h-adaptive version, as
well as taking more steps, performs very slightly better. It may seem at this point that there
is no real advantage to h-adaptivity, but we will see in Section [4.4 that this particular problem

performs significantly better with p-adaptivity.
page 61

FEM Algorithms in C++ Section 4

Test Problem 1 with Local and Global h-Refinement Error

100 4
S
@
1071 1
| —@— Energy error (local)
—8— Error estimator (local)
| =& Energy error (global)
—¢— Error estimator (global)
1072 4 — : —
10! 107
DoF

Figure 4.3: h-adaptivity (local refinement) and global h-refinement convergence rates on Problem .1,

We note that for this problem we can calculate the efficiency indices of our error bounds

with

o — g(uh,h,p)’
lu—unl g

which gives us an indication of how close our error estimate is compared to the actual error
in the solution. Note that we can only calculate this quantity here because we know the exact
solution. The first ten steps of the h-adaptive algorithm produce the results in Table f.1. We see
that the error estimator is initially about 4% inefficient for the initial condition of 4 elements,
but this decreases down to 0.1% inefficiency by the time that the algorithm has split the mesh

into 280 elements. This means that our bound for this problem is very tight and we aren’t doing

too many unnecessary refinements.

page 62

Section 4 FEM Algorithms in C++

N ©

4 1.042
8 1.010
12 1.024
24 1.006
36 1.007
52 1.001
88 1.002
108 1.002
196 1.001
280 1.001

Table 4.1

4.3.2 Test Problem 2

Recall that Problem 1.2 is a boundary layer problem, exhibiting boundaries near x = 0 and

x = 1, with the exact solution

_exp(x/ve) exp(—z/\/e)exp(1/\/e)
exp(1/y/e) +1 exp(1/y/e) +1

u(r) =

+1,

where e = 1073,

We initialise the h-adaptive algorithm with a mesh of 4 linear elements, and get the results

in Figure 1.4 after 3 h-adaptive steps.

We see that the initial mesh is very bad at approximating the solution: the approximate
solution does not capture the plateau through the centre of the domain, it does not capture
the sharp derivative near the boundaries, and there is an erroneous overshoot in the solution’s
maximum value. However, by 2 and 3 refinement steps we see the features of the true solution

becoming apparent in the approximate solution.

We notice that, unlike Problem [.1], that the h-adaptive algorithm produces very different
results to global refinement. Figure 4.5 shows, for the same initial condition, global refinement
having a much higher error for the same number of degrees of freedom. Interestingly, we see

some very high convergence rates for local refinement when the algorithm is starting. This is

page 63

FEM Algorithms in C++ Section 4

Test Problem 2 with 0 h-Adaptive Step Test Problem 2 with 1 h-Adaptive Step
1.24
1.0
1.0 4
0.8
0.8 1
0.6 1
> 0.6 >
.44
0.4+ 0
0.2 1 0.2
—— Approximation —— Approximation
0.0 4 —— Exact 0.0 4 —— Exact
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
Test Problem 2 with 2 h-Adaptive Steps Test Problem 2 with 3 h-Adaptive Steps
1.0 4 1.0 4
0.8 1 0.8
0.6 0.6 1
=1 =]
0.4 4 0.4
0.2 4 0.24
—— Approximation —— Approximation
0.0 4 —— Exact 0.0 —— Exact
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 4.4: h-adaptivity on Problem {.2.

likely to be because this is the stage at which the boundaries are resolved in the approximation,
and we therefore get much closer to the solution. When solving these numerical experiments,
the generation of the global refinement data used significantly more computational resources
on my computer than the local adaptivity data, and this is directly due to the larger number
of degrees of freedom. We note that there were roughly four times the number of degrees of
freedom involved in reducing the error in the global refinement to roughly the same amount

of error in the local adaptivity.

We may plot the mesh from the h-adaptivity for the first 14 refinement steps to give us an
idea of how the elements have been marked for refinement, given in Figure f.6. As one may
expect, with having errors initially high near the boundary, the mesh has been mostly refined

near the boundaries.

Also note that we could have performed similar analysis to those above without the exact

page 64

Section 4 FEM Algorithms in C++

Test Problem 2 with Local and Global h-Refinement Error

100 4
] —&— Energy error (local)
—@— Error estimator (local)
—>— Energy error (global)
—>— Error estimator (global)
1071 -
S
@
1072]
1073]

10! 102 103
DoF

Figure 4.5: h-adaptivity (local refinement) and global h-refinement convergence rates on Problem .2,

solutions to the equations; however it is still very useful to have this for these test problems,

as we can make further comparisons between the actual error and the estimate error.

4.3.3 Test Problem 3

Recall that Problem [.3 is a problem exhibiting a shock with the exact solution

u(z) = arctan(100(z — 1/3)) 4 (1 — x) arctan(100/3) — = arctan(200/3).

As a change to the previous examples, we set the initial mesh for this problem to have 6
linear elements; this is because 4 elements don’t yield desirable results for some of the adap-

tivity algorithms due to a lack of resolution over the shock. The first 3 steps of the h-adaptive

page 65

FEM Algorithms in C++ Section 4

Problem 2 Mesh After 6 h-Adaptive Steps

2.00
1.75 4
1.50 A
1.25 4

oo i

0.75 A

0.50 -

0.25 A

O-OO T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.6: Resulting h-adaptivity mesh for Problem .2,

algorithm are shown in Figure . 7.

The initial mesh produces a solution that roughly describes the true solution near the bound-
aries, but doesn’t do a very good job at approximating the true solution in the middle of the
domain. Adding to this observation, we see that the derivative across the shock points becomes
steeper between adaptive steps, until the steepness is roughly met by the third step. By this
third step we have most of the features that we would expect to see in a good approximation

of the solution.

As shown in Figure 1.8 we very clearly see that the mesh has rightfully been refined around
the shock region, allowing the solution to become much more accurate. Because the mesh
is so fine, our plot does not really show how fine the mesh goes at its finest, but we see the

important feature that the element sizes are certainly smaller in this region.

page 66

Section 4 FEM Algorithms in C++

Test Problem 3 with 0 h-Adaptive Steps Test Problem 3 with 1 h-Adaptive Step
2.0
2.0
1.5 4
1.5+
1.0 4 1.0 4
=3 =1
0.5 0.5
0.0 0.01
054
-0.5 —— Approximation —— Approximation
— Exact — Exact
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
Test Problem 3 with 2 h-Adaptive Steps Test Problem 3 with 3 h-Adaptive Steps
1.5 1.54
1.0 4 1.0 4
5 05 S 05
0.0 1 0.0 4
=0.57 —— Approximation =0.51 —— Approximation
—— Exact —— Exact
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 4.7: h-adaptivity on Problem {i.3.

4.4 p-adaptivity

Here, just like with h-adaptivity, we again choose to mark elements for refinement for those
elements that have local error indicators greater or equal to one third of the largest local error
indicator. However we now refine elements by increasing the polynomial on elements marked
for refinement, rather than splitting them into two new elements. This procedure is outlined

in Algorithm 4.3,

Algorithm 4.3: p-refinement
Input : 7y, up, Ny
Output: 777, up®"
forall x do
if 7. > maxmn,./3 then
L Increase polynomial degree on element;

This is somewhat of an easier algorithm to implement computationally as the number of

page 67

FEM Algorithms in C++ Section 4

5 00 Problem 3 Mesh After 15 h-Adaptive Steps

1.75 A
1.50 A
1.25 A
0.75 4
0.50 A

0.25 A

0-00 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.8: Resulting h-adaptivity mesh for Problem .3

elements between subsequent iterations remains the same.

We note that, as described in [18], we can get exponentially converging solutions for solu-
tions that are very smooth (solutions lie in C? for some large p). This is very good news for our
convergence rates: this means that, for sufficiently smooth functions, we will converge to the
solution extremely quickly. This idea will be further developed in Section .5, where we will

combine this extraordinarily useful feature with mesh refinement.

4.4.1 TestProblem1

For Problem .7 we again choose an initial mesh with 4 linear elements.

Immediately we can see in Figure .9 that the solution, after one p-adaptive step, is very

close to the exact solution. As we will see in Section .5 this makes sense with the smoothness

page 68

Section 4 FEM Algorithms in C++

Test Problem 1 with 0 p-Adaptive Steps Test Problem 1 with 1 p-Adaptive Step

1.00 4 1.00 4

0.75 1 0.75 1
0.50 1 0.50 1
0.25 1 0.25 1
—0.25 1 —0.25 4

—0.50 1 —0.50 4

—0.75 4 —0.75 4
—— Approximation

—-1.00 4 — Exact

—— Approximation
~1.00 4 — Exact

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.9: p-adaptivity on Problem .1

of the solution to this problem.

We can study the convergence rates for this problem under p-adaptivity, as can be seen
in Figure 1.10. As discussed for a similar smooth problem in [17, p. 15] we see exponential
convergence rates here. In fact, with the slight concavity we’re actually seeing some super-

exponential convergence rates here.

One thing that we do notice about Figure that may be slightly concerning is the point
where the error in the energy norm is higher than the error estimate at 25 degrees of freedom.
We’ve calculated an upper bound to the error, so the bound should never be higher than the
error. However, we must remember that these calculations have been computed on a computer
with finite precision, and so this situation may have happened due to machine precision. In fact,
we may plot the error and estimator values for a few more iterations of p-refinement in Figure
to see that the error actually increases with increasing degrees of freedom; this is further

evidence to suggest that we may be having issues with machine precision.

We note that the p-adaptive process has actually given us the same as global p refinement,
meaning that the error estimator must have been roughly equally distributed. We can see,
though, that this was probably the right thing to do! Figure shows the convergence rates

for both the h- and p-adaptive algorithms, and shows that p-adaptivity is far superior in reduc-

page 69

FEM Algorithms in C++ Section 4

Test Problem 1 p-Adaptive Error

100 5
1071 3
é 1072 -
5 p
1073 4
1074 4
1 —@— Energy error
1 —e— Error estimator

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
DoF

Figure 4.10: p-adaptivity convergence rates on Problem .1,

ing the error than h-adaptivity for this problem.

Our efficiency indices (defined in Section .3)) here begin with ©q = 1.042, and then by third
iteration reduce to ©3 = 1.002; this means, just as what we saw with h-adaptivity, the error

bound on this problem is very efficient.

4.4.2 Test Problem 2

For p-adaptivity for Problem .2, we choose an initial mesh of 4 linear elements, and produce

Figure after 3 p-adaptive steps.

We see that the results here look a little strange to begin with: there are various oscillations
that appear across the transition between the boundary layers and the plateau in the centre

of the domain. However these oscillations eventually disappear once we introduce enough

page 70

Section 4 FEM Algorithms in C++

Test Problem 1 p-Adaptive Error

100 4

1072 E

error

1074 E

i —@— Energy error
1 —@— Error estimator

5 10 15 20 25 30 35 40
DoF

Figure 4.11: p-adaptivity convergence issues on Problem f.1.

degrees of freedom, as shown in the convergence rate in Figure B.14. Interestingly, the error
indicator does not perform as efficiently as it did for the h-adaptive algorithm, with an effi-
ciency index of © = 1.401 at the eighth adaptive step. This isn’t a huge problem since the
indicator remains above the actual error, but it shows that the error indicator may not perform

as efficiently in some problems.

Comparing h- and p-adaptivity for this problem, Figure shows us that p-adaptivity is

better for this test problem, with its far superior convergence rate.

4.4.3 Test Problem 3

For p-adaptivity of Problem [.3, we (like in Section [.3) start with an initial mesh of 6 linear
page 71

FEM Algorithms in C++ Section 4

Test Problem 1 with h- and p-Adaptivity Error

—&— Energy error (h-adaptivity)
—@— Error estimator (h-adaptivity)
10°] —— Energy error (p-adaptivity)
—»— Error estimator (p-adaptivity)
£ 101 4
Q]
102 b

10! 102 103
DoF

Figure 4.12: h- and p-adaptivity convergence on Problem .1,
elements. The results for the first 3 steps of p-adaptivity are shown in Figure .16.

We notice that after the first p-adaptive step, there is a clear overshoot of the solution’s
value, likely to be caused by the steep derivative needed over the shock. As we take more
steps we see these oscillations both spread out and become smaller in amplitude as the poly-
nomial degrees in that region are increased. Figure shows the polynomial degrees across
the mesh after the third p-adaptive step, and shows that the polynomial degree on the two
elements closest to the shock have been increased to 4; the polynomial degree has been left

unchanged as 1 elsewhere on the domain.

4.5 hp-adaptivity

Here we will combine the strategies of the above by making local refinements to both the

mesh and the polynomial degrees in a suitable combination. We will still mark elements that

page 72

Section 4 FEM Algorithms in C++

Test Problem 2 with 0 p-Adaptive Steps Test Problem 2 with 1 p-Adaptive Step

1.2
1.0
1.0

0.8 1
0.8
> > 0.6 1
0.6
44
0.4 0
0.2 0.2
—— Approximation —— Approximation
0.0 4 —— Exact 0.0 4 —— Exact
T T
0.8 1.

T

T T T
0.0 0.2 0.4 0.6 0 0.0 0.2 0.4 0.6 0.8 1.0

Test Problem 2 with 2 p-Adaptive Steps Test Problem 2 with 3 p-Adaptive Steps

1.0 1.0

0.8 0.8

0.6 0.6

=1 =]
0.4 0.4 4
0.2 4 0.2 4
—— Approximation —— Approximation
0.0 4 —— Exact 0.0 —— Exact
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

X X

Figure 4.13: p-adaptivity on Problem f.2. Note that for plotting purposes we take 10 sample points per element,
which leads to plots 3 and 4 looking not as smooth as they should; be assured that the actual solution described
there are cubic and quartic, respectively.

we will refine in the same way as before, but we now have a choice as to whether we h- or

p-refine.

As discussed in Section 1.4, we can see exponential convergence rates for solutions that are
sufficiently smooth, and we have seen in Section that we can achieve polynomial conver-
gence rates. If p-adaptivity has higher convergence rates then why do we need to combine the

two in the first place?

If the refinement of the mesh is not strong enough, then the exponential part of error re-
duction (appearing from p-adaption) cannot appear [18, p. 604]. We therefore may need to
refine the mesh before increasing the polynomial degree, and we ought to make this decision
depending upon how ‘smooth’ the solution is; to detect whether the solution is ‘smooth’, we

introduce a so-called smoothness indicator as done in [42, p. 2733] (which is rewritten in more

page 73

FEM Algorithms in C++ Section 4

Test Problem 2 with p-Adaptivity Convergence

100 4
3 —&— Energy error

—&— Error estimator

error

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
DoF

Figure 4.14: p-adaptivity convergence on Problem .2,

familiar notation Equation (#.10)) for u € H'(K), where K C Qs the part of domain denoted

by a single element, «.

lellcgro [COth(l) (hf?l a7 + hic |U|§11(K))] i #0
Fielul = (4.10)

1 ifu=0

Combining algorithms .2 and .3 with our smoothness indicator we get Algorithm f.4, which

is effectively the same as [42, algorithm 2] (by taking 7 = 0.5).

page 74

Section 4 FEM Algorithms in C++

Test Problem 2 with h- and p-Adaptivity Error

100 4
] —&— Energy error (h-adaptivity)
—@— Error estimator (h-adaptivity)
—>— Energy error (p-adaptivity)
—»— Error estimator (p-adaptivity)
1071 E
S
@
1072]
1073 4
10! 102
DoF

Figure 4.15: h- and p-adaptivity convergence on Problem .2,

4.5.1 TestProblem1

For Problem [.1], we again start with 4 linear elements as an initial mesh. Running the hp-

adaptive algorithm for the first 3 steps gives Figure .18,

We notice that approximation converges very quickly to the true solution, even after just a
few hp-adaptive steps. This is shown especially well in Figure .19, which shows the conver-
gence rate of the hp-algorithm after 8 hp-adaptive steps, and very clearly shows exponential

convergence rates.

We may also produce a graph showing the sizes and polynomial degrees for each element
after 8 hp-adaptive steps, which is shown in Figure .20. This shows that the algorithm, from
the initial condition, chose to double the number of elements (we now have 8 elements) and

increase the polynomial degrees to order 5. This is a very sensible resulting mesh as the true

page 75

FEM Algorithms in C++ Section 4

Test Problem 3 with 0 p-Adaptive Steps Test Problem 3 with 1 p-Adaptive Step

2.0
254

1.5 2.01

1.5
1.0
1.0

0.5 1 0.51

0.0
0.0 4

~0.5 4

—— Approximation -1.01 —— Approximation
—— Exact —— Exact

T T T T T T T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Test Problem 3 with 2 p-Adaptive Steps Test Problem 3 with 3 p-Adaptive Steps

2.0 1
1.5

1.5

1.0
1.0

0.0 1 0.04

—0.5

—~0.5 4
—— Approximation
—— Exact

—— Approximation
—-1.04 — Exact

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.16: p-adaptivity on Problem .3,

solution is very smooth, upon which we expect higher-order polynomials to approximate the

solution better.

4.5.2 Test Problem 2

Problem .2 has a smooth solution, but there needs to be sufficient resolution around the
boundaries before a viable solution becomes apparent. The hp-adaptive algorithm produces

the results in Figure for the first 3 hp-adaptive steps.

Wihler [42] approximates a similar problem to Problem .2 (where ¢ = 10~5), and produces a
plot of the convergence rates and mesh. We produce our version of these results respectively

in Figures and (.23, plotting both the results to Problem and the modified problem
page 76

Section 4 FEM Algorithms in C++

Problem 3 Mesh After 3 h-Adaptive Steps

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.17: h- and p-adaptivity convergence issues on Problem {.2.

givenin [42, ex. 2].

First of all, we see that the hp-adaptive strategy for Problem [£.2) yields exponential conver-
gence rates, resulting from the use of p-adaptivity. We notice that there are sometimes lapses
in the efficiency of the error estimator, but it otherwise sits efficiently just above the actual
error. However there is a problem for when the graph goes beyond 70 degrees of freedom
where the energy error is higher than the error indicator; this is likely due to similar reasons as
discussed in Section f.4 when the convergence graph had a similar problem. In fact, by running
Blakey FEM with the correct parameters for this problem, we see that the individual error indi-
cators on each element are in the order of 1 x 1071°, which is in the order of machine precision
in this C++ implementation. Therefore the likely cause for this is not a fault in the mathematical

analysis, but more likely a rounding error.

The mesh shown for Problem f.2 also shows reasonable results: the elements are smaller

page 77

FEM Algorithms in C++ Section 4

Algorithm 4.4: p-refinement
Input : 7y, up, Ny
Output: 777, u®"
forall « do
if 7, > maxm,,/3 then
if 71 > 0.5 then
L Increase polynomial degree on element;

else
| Split element in half and add both these elements to 77"

in size near the boundaries. However it is interesting that the polynomial degree is so high
over the plateau region. More investigation would need to take place to determine why this

happened, as one would expect large linear elements would be sufficient for this problem.

We may also compare our results with Wihler’s results for the modified problem to Prob-
lem B2 where ¢ = 107°. We notice that there are some very similar features between the
two convergence rates: in particular we see that there is a large gap between the error and
the estimator while the degrees of freedom are below 10, but this gap closes as the degrees of
freedom increase. We also notice that both convergence graphs yield exponential convergence
rates towards the true solution. However, Wihler’s results appear to indicate that the solution
was found within an accuracy of 1 x 10~ with 78 degrees of freedom — but our algorithm
takes around 83 degrees of freedom to achieve this, despite using the same smoothness indi-
cators, error indicators, and problem parameters. There is likely to be some small discrepancy
in the specific numerics of each implementation, but we can be can be reassured by the results

having the same qualitative behaviour.

Comparing the meshes between our results and Wihler’s results show roughly the same be-
haviour — in that larger elements with lower-order polynomials appear in the centre of the
domain, and smaller elements with higher-order polynomials appear at the boundaries. How-
ever the polynomial degrees in outer boundary elements do not match between our results
and Wihler’s. This could be an issue in how the boundary conditions have been applied, and
could also explain the slightly higher degrees of freedom needed to reduce the error in our

results.

page 78

Section 4

FEM Algorithms in C++

1.00 4

0.75 1

0.50 1

0.25 1

Test Problem 1 with 0 hp-Adaptive Steps

1.00 4

0.75 1

0.50 1

0.25 1

Test Problem 1 with 1 hp-Adaptive Step

> 0.00 A > 0.00 4
—0.25 4 —0.25 1
—0.50 - —0.50 1
—0.75 4 —0.75 4
—— Approximation —— Approximation
—-1.00 4 — Exact ~1.00 4 — Exact
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
Test Problem 1 with 2 hp-Adaptive Steps Test Problem 1 with 3 hp-Adaptive Steps
1.00 4 1.00 4
0.75 1 0.75 1
0.50 1 0.50
0.25 1 0.25 1
> 0.004 > 0.00 A
—0.25 1 —0.25 1
—0.50 1 —0.50 1
—0.75 1 —0.75 1
—— Approximation —— Approximation
—-1.00 4 — Exact —1.00 4 — Exact
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.18: hp-adaptivity on Problem .1

We can, however, be satisfied that our results do yield exponential convergence rates to-

wards the exact solution for both of these variations on Problem [.2.

4.5.3 Test Problem 3

Problem 1.3 is designed to solve the same problem as [42, ex. 4], so we can make some direct
comparisons between our results and the results of Wihler. Figure shows the hp-adaptive
algorithm for the first 3 steps, and Figures and respectively show the convergence
rate and resulting mesh after 20 steps. For these plots we have chosen an initial mesh of 6

linear elements.

Figure clearly shows that hp-adaptivity is helping the approximation approach the solu-
tion step-by-step, and Figure shows that the solution is converging exponentially. Compar-

ing the convergence plot with Wihler’s plot in [42, fig. 5], we first note that our initial meshes

page 79

FEM Algorithms in C++ Section 4

Test Problem 1 with hp-Adaptivity Convergence

—&— Energy error
100 —@— Error estimator

1071 4
S
GL') 10_2 =

1073 3

10_4 E T T T T T T T

5 10 15 20 25 30 35
DoF

Figure 4.19: hp-adaptivity convergence on Problem {.1.

are different: ours consists of 6 linear elements, and Wihler’s consists of 4 linear elements.
Despite this, the convergence rates have roughly the same features. We actually notice that
at around 100 degrees of freedom, our error is calculated at just under 1 x 10~* and Wihler’s
error is calculated at somewhere between 1 x 1073 and 1 x 10~*. This actually shows that our
solution has a smaller error for fewer degrees of freedom than Wihler’s but, just like in Section
[.5, this could be due to numerical errors or specific implementation features. It could also be

due to the difference in initial condition.

The mesh shown in Figure is very similar to the mesh shown in [42, fig. 5]: larger ele-
ments of degrees 4—7 appear near the boundaries, and smaller elements appear around the
shock region with high polynomial degrees around the point and low polynomial degrees in

the centre of the shock region.

page 80

Section 4 FEM Algorithms in C++

Problem 1 Mesh After 8 hp-Adaptive Steps

a 3 -

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.20: hp-adaptivity element sizes and polynomial degrees on Problem B.1.

4.6 Results Summary

Table [.7 illustrates the performance and effectiveness of each algorithm on each of the
different problems. We note here that the h (global) and h entries for Problem 3 are accurate
to only 1 x 1072 but were terminated early because of a high number of degrees of freedom,
and are indicated by the braces (); the entries for the same problem for p (global) and p are

accurate to only 1 x 10~ for similar reasons, and are indicated with curly braces {}.

Problem ‘ h (global) h p (global) p hp
4.1 11 [8193] 14 [1677] 4[21] 4 [21] 6 [33]
Wi 9 [2049] 13 [397] 6 [29] 4 [17] 7 [27]
A3 (13[32769]) (19[2131]) {14[91]} {14[35]} 10 [64]

Table 4.2: For each problem, shows the number of iterations [and degrees of freedom in brackets] for each algo-
rithm to take the approximation within 1 x 10~3 of the exact solution in the energy norm, with the exception of
those in braces and curly braces.

page 81

FEM Algorithms in C++ Section 4

Test Problem 2 with 0 hp-Adaptive Steps Test Problem 2 with 1 hp-Adaptive Step

1.0 1 1.0

0.8 1 0.8 1

0.6 4 0.6

=1 =]
0.4+ 0.4
0.2 0.24
—— Approximation —— Approximation
0.0 4 —— Exact 0.0 4 —— Exact
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
Test Problem 2 with 2 hp-Adaptive Steps Test Problem 2 with 3 hp-Adaptive Steps

1.0 4 1.04

0.8 1 0.8

0.6 0.6

=1 =]
0.4 0.4
0.2 1 0.24
—— Approximation —— Approximation
0.0 4 —— Exact 0.0 —— Exact
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

X X

Figure 4.21: hp-adaptivity on Problem B.2,

For each of the test problems, we can see that h-adaptivity certainly has at least some advan-
tage over global h-refinement (illustrated by Figures 1.3, .5, and £.8). We can see, therefore,
that our error indicators are functioning as we’d like and that they are suitable for adaptive al-
gorithms. In particular, Problem had achieved a much lower error in the energy norm with
fewer degrees of freedom due to the algorithm only refining the mesh near the boundaries,

and not in the centre of the domain where it is not needed.

We notice similar results for p-adaptivity, where the adaptivity has had at least some sort

of advantage, as shown in Figures .10, .14, and .17. In particular, Problem [.1] benefited
hugely from using p-adaptivity.

For hp-adaptivity, we see (with the exception of Problem [.1)) an advantage of using hp-
adaptivity over exclusive h or p global refinement. In fact, for Problem [.3, the degrees of

freedom for a lower error were reduced by a factor of roughly 500, which shows the power of

page 82

Section 4

FEM Algorithms in C++

error

1075 4

1076 4

107 4

10 1

0.0

Test Problem 1 with hp-Adaptivity Convergence

—8— Energy error

—8— Error estimator

T
10 20 30 40 50 60 70 80
DoF

error

Wihler's Boundary Layer Problem with hp-Adaptivity Convergence

100 4

102 4

1076 4

—— Energy error
—8— Error estimator

Figure 4.22: hp-adaptivity convergence on Problem (left) and Wihler’s problem (right).

Test Problem 2 Mesh After 20 hp-Adaptive Steps

0.2 0.4 0.6 0.8 1.0

nghler's Boundary Layer Problem Mesh After 20 hp-Adaptive Steps

8 H H
740 —H
64 [
5
Q
41
34
24— [——
14
0 : . .
0.0 0.2 0.6 0.8 1.0

Figure 4.23: hp-adaptivity element sizes and polynomial degrees on Problem .2 (left) and Wihler’s problem (right).

hp-adaptive algorithms.

The avid reader may notice that these three examples were chosen specifically to highlight

the types of solutions that may benefit from the different adaptivity techniques. In particu-

lar, we notice that Problem f.1 performed particularly well with p-adaptivity (likely due to the

high smoothness), Problem performed particularly well with h-adaptivity (likely due to the

boundaries), and Problem [.3 performed particularly well with hp-adaptivity (likely due to a

mixture of the small shock region and the solution’s overall smoothness).

page 83

FEM Algorithms in C++

Section 4

Test Problem 3 with 0 hp-Adaptive Steps

2.0
1.54
1.0 1
=]
0.5 1
0.0 1
—0.51 —— Approximation
— Exact
0.0 0.2 0.4 0.6 0.8 1.0
X
Test Problem 3 with 2 hp-Adaptive Steps
2.01
1.51
1.0 1
s 054
0.0 1
—0.5
—— Approximation
— Exact
-1.01 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Test Problem 3 with 1 hp-Adaptive Step

1.5
1.0
0.5
0.0 1
—~0.54
~1.04
—— Approximation
—-1.54 —— Exact
0.0 0.2 0.4 0.6 0.8 1.0
X
Test Problem 3 with 3 hp-Adaptive Steps
1.5
1.0
0.5 4
0.0
=051 —— Approximation
— Exact
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.24: hp-adaptivity on Problem {3,

page 84

Section 4 FEM Algorithms in C++
Test Problem 3 with hp-Adaptivity Convergence
1 —&— Energy error
10? - —8— Error estimator

error

20 40
DoF

60

80 100

Figure 4.25: hp-adaptivity element sizes and polynomial degrees on Problem {.3.

page 85

FEM Algorithms in C++ Section 4

Test Problem 3 Mesh After 20 hp-Adaptive Steps

14 - =

12 A

10 A

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.26: hp-adaptivity element sizes and polynomial degrees on Problem {.3.

page 86

Section 5

Nonlinear Problems

The problem given in Section is very clearly a linear differential equation; we can also
consider a different model problem that is nonlinear, as given in Equation (b.1), and follow a
similar procedure as before to derive the weak formulation of this problem. Similarly to the

previous problem, for a given bounded Lipschitz domain @ C R?, d > 1, we seek u such that

—eAu = f(z,u(x)),z € Q (5.1a)

u =0, on 0f) (5.1b)

Here, e > 0and f : 2 x R — R is continuously differentiable.
For this problem we will seek u in the function space H;(2) =: V.

Multiplying Equation (5.1d) by a test function, v € H} () to give

—eAuv = fv, Yo € Hy(Q).

Integrating over the domain and performing integration by parts as done previously we need

to find u € H}(Q) such that

e(Vu, Vo) = (f(u),v), Vo € Hi(Q), (5.2)

FEM Algorithms in C++ Section 5

where we have suppressed the dependence of = in f for simplicity. Notice that this problem
is almost the same as the problem given in Section except we have implicitly moved the

”(cu,v)” into f and now allowed f to depend upon w.

Our finite element method is: uy,, € V;, C Hy(12) such that

e(Vunp, Vup) = (f(unyp), vn), Yo € V. (5.3)

Note that we cannot use Lax-Milgram for proving existence and uniqueness of the nonlinear
problem; in fact this report will not concern itself with proving the existence or uniqueness of
this nonlinear problem and instead supposes that at least one solution exists, just as Amrein

et. al [B]. The report instead relies on results such as those in [28] for checking final solutions.

Writing X = H}(Q), we denote X! = H~'(Q) as the dual space of X (cf. [7, p. 219]).

Hence, we may definethemap F, : X — X! by
(F.(u),v) := (eVu, Vo) — (f(u),v), Y0 € X,

where (-, -) is the dual product in X! x X,

Hence, the weak formulation may be written in the equivalent nonlinear operator form: Find
u € X such that

F.(u) =0. (5.4)

We define the e-norm as:

1

2 2 2
lull, == (Il a0y + Nl o))

Newton’s method seeks to compute zeros such that Equation (b.4) is satisfied. Assuming

that the Fréchet derivative of F, I/ exists, then the Newton’s method is given by: for an initial

page 88

Section 5 FEM Algorithms in C++

guess, ug, wWe generate

"t ="+ Au,n >0,

where each update, Au", satisfies

F!/(u")Au" = —F.(u"),n > 0.

€

Newton’s method is not very reliable when the initial guess is far away, so we introduce a

dampening parameter, ,, € [0, 1]:
u" = u" — 6,Au",n >0,

where ,, may be chosen according to [3, sec. 2.2]. We have chosen the value in a similar way,

except we choose the e-norm in the calculation of the parameter:

O = /27| Fe(un) |

where 7 > 0 is the tolerance in which we hope to solve subsequent steps to within Newton’s

method.

For our particular model problem in Equation (b.1)), the Fréchet derivative of F. is given by

(F (w)w, v) = /Q ew'' dz — /Q F(u)wo da.

Hence, given u,, Newton’s method is: Find «"™! € X such that

F'(u™)(u"™ —uy,) = —0,F.(u"). (5.5)

€

Akin to the linear model problem, we may introduce two functionals to help us write this

page 89

FEM Algorithms in C++ Section 5

more concisely:

ac(u™;u" v) = a (u";u",v) — Ol (u";v), Vo € X, (5.6)
where

and

l(u;v) == /Q (eu'v' — f(u)v) du.

We can use a, and [, in an analogous way to the linear problem to compute the Newton

update at each Newton step.

5.1 Simple Numerics

5.1.1 Test Problem 1 (Nonlinear)

Problem 5.1.
The Bratu problem in one dimension has, depending upon the bifurcation parameter ¢, some-

where between zero and two solutions.

The data is set on Equation (5.3) as f = exp(u), ¢ = 0, and we will allow ¢ to vary slightly.

We note from [28, p. 27] that the critical value of the bifurcation parameter is €. ~ 1/3.514.

Provided that our bifurcation parameter € > €., the problem has two solutions — and this is

the case that we will consider.

We will solve this nonlinear problem with 20 elements, from which we will vary the bifurca-

tion parameter and initial condition. As suggested by Mohsen [28, p. 28], we will set the initial

page 90

Section 5 FEM Algorithms in C++

condition for each simulation to be
uo(z) = asin(rz).

We show the results for various initial conditions and bifurcation parameters, producing Figure

5.1

We note that, after comparing with the maximum values of the solution given by Mohsen

[28, p. 29], that the values appear to be correct.

5.1.2 Test Problem 2 (Nonlinear)

For this nonlinear test problem, we will actually choose a linear problem to make sure that
the solver works in this degenerative case. We will take our new problem as the same as the
boundary layer problem, given as Problem 1.2 For the parameters for our new model equation,

we give these in Problem b.2.

Problem 5.2.
A boundary layer problem, exhibiting boundaries near x = 0 and © = 1, as given in [42, ex. 2]

with the exact solution

exp(e/vE) exp(—a/\/E) exp(1/y/F)

)= eV + 1 exp(1/ve) + 1

+ 1.

The data is set on Equation (5A) ase = 1073, f = —1 — w.

Running with the correct parameters produces Figure b.2. We see that the features of the
solution are present, very similarly to the solutions shown in Section f which suggests that our

nonlinear solver works for the degenerative linear case.

page 91

FEM Algorithms in C++ Section 5

5.1.3 Test Problem 3 (Nonlinear)

Problem 5.3.
Here we will solve the steady one-dimensional version of Fisher’s equation with zero boundary

conditions. The problem infinitely many solutions [3, p. 1652].

The data is set on Equation (5.7) as e = 0.00025, f = u(u — 1).

We choose a similar initial condition to Amrein et. al [B, fig. 3] that consists of four plateaued

peaks at uy = 1, and three plateaued troughs at ug = —0.4. From this initial data we produce

Figure b.3.

The figure displays the same attributes as those in [3] so that we can be fairly sure that
this works. Although we aren’t studying here the convergence or refinement properties of
the approximation, we note that the Newton solver converged within an [2-norm tolerance of

1 x 103 between subsequent terms within 30 steps.

page 92

Section 5 FEM Algorithms in C++
10 Problem 1 with a=1, e=10 8 Problem 1 with a=8, €=10
—— Approximation —— Approximation
74
0.8 1
6
0.6 51
E} s 44
0.4 3]
24
0.2
14
0.0 T T T T 0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
10 Problem 1 with a=1, e=1 8 Problem 1 with a=8, e=1
—— Approximation —— Approximation
74
0.8 1
6
0.6 31
E} s 44
0.4 3
24
0.2 1
1
0.0 T T T T 0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
1o Problem 1 with a=1, e=1/3 o Problem 1 with a=6, e=1/3
—— Approximation —— Approximation
74
0.8
6
0.6 1 31
=] S 44
0.4 3]
24
0.2 4
1
0.0 T T T T 0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.1: Solutions of Problem B.1. Lower solutions are displayed on the left and upper solutions are displayed

on the right.

page 93

FEM Algorithms in C++ Section 5

Problem 2
1.0 A
0.8 A
0.6 A
S5
0.4 -
0.2 A
0.0 —— Approximation
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X
Figure 5.2: Solution of Problem B.2.
Problem 3 Initial Condition Problem 3
1.0 1.0
0.8 0.81
0.6 0.6
041 0.4
2 ® 0.2
0.2 4
0.0
0.0
0.2 1
-0.2 4
| H U et
—0.44 — u0 —— Approximation
0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 0.6 0.8 10

Figure 5.3: Initial condition (left) and solution (right) of Problem B.3.

page 94

Section 6

Conclusions

In conclusion, we found that an ~Ap-adaptive algorithm for finite element methods can greatly
reduce the degrees of freedom for high-accuracy results, especially when smooth functions
with steep derivatives are involved. This considerably reduced computational resources over
the global refinement strategy that would be necessary for the same accuracy. We did find
some situations where a p-adaptive algorithm yielded higher convergence rates between the

degrees of freedom and error, but the Ap-adaptive was the most consistent in doing so.

We started in Section P| by laying the background in Ap-FEMs, creating a linear model prob-

lem, and proving that the chosen problem was well-posed.

We outlined the specificimplementation choices in Section B, which were heavily influenced
by the work of Solin et. al [33]; the implementation focused on creating an efficient piece of
software: the efficiency was particularly increased by the use of an intelligent cache with the
quadrature calculations and an efficient class structure. Further discussions were made at how
the code could be further optimised with, for example, parallelising the linear system solving
process and implementing a sparse matrix data structure. In particular we note that we used a
non-parallelisable iterative conjugate gradient method for solving all linear systems that arose,
which significantly restricts the available computing resources available on most modern-day
computers; we note that a parallelisable version of the conjugate gradient method could be
implemented, as suggested by Hestenes et. al [20]. We also note that the code was written in
a generic way, allowing for further adaptability and extension of features if future developers

were to continue this project.

A posteriori error bounds were derived and proved for a linear problem in Section f, in-

fluenced by the work of Schwab [32]. We further derived local element indicators leading to

FEM Algorithms in C++ Section 6

robust and efficient adaptivity algorithms, and made use of a smoothness parameter that was
used in the work of Wihler [42]. We solved some numerical calculations for three chosen test
problems; we found that the h- and p-adaptive algorithms worked with varying success de-
pending upon the specific test problem, but the hp-adaptive algorithm consistently performed
well and yielded high (exponential) rates of convergence. In nearly all cases, global refinement

of h and p separately were very costly and unnecessary.

Section fintroduced a new model problem that was nonlinear (specifically semilinear). This
new model problem was implemented into the code, using inheritance to reduce code redun-
dancy from the linear solving process. In particular we used a Newton solver to solve the re-
sulting nonlinear system. For this model problem we chose a further three test problems to be
solved, for which the results appeared to coincide with the results of other authors performing

the same calculations [28, 3].

Further work on this project could involve generalising the implementation to work with
dimensions higher than one, which would benefit most real-world problems; our implementa-
tion is concerned only with one-dimensional PDEs, but is designed in a way that would easily
support higher-dimensional PDEs in the future. We could also work toward implementing the
a posteriori error bounds and using them to give hp-adaptive algorithms to nonlinear model

problems, like the work demonstrated by Amrein et. al [3].

page 96

10

11

12

13

14

15

16

17

Appendix A

Code

Note that all of the code for this project can be found on the GitHub repository, as shown
on Page 2. We will specifically list and discuss the code here for the Solve method of the
Solution_linear class, to give an idea of the process involved in the solvers. We also include

the calculation of the value of the bilinear functional, a(u, v), and linear functional I(v).

void Solution_linear: :Solve(const double &Za_cgTolerance)

{

double A 0;

double B 0;

int n = this->mesh->elements >get_DoF();

Elements* elements this->mesh->elements;

Matrix_full<double> stiffnessMatrix(n, n, 0);

std: :vector<double> loadVector(n, 0);

for (int elementCounter=0; elementCounter<this->noElements;

elementCounter)

FEM Algorithms in C++

Element* currentElement

(#(this—>mesh->elements)) [elementCounter] ;

std: :vector<int> elementDoFs

elements->get_elementDoFs(elementCounter) ;

for (int a=0; a<elementDoFs.size(); ++a)

{

int j = elementDoFs[al;

f double basis currentElement->basisFunction(a, 0);

loadVector[j] this->1(currentElement, basis);

for (int b=0; b<elementDoFs.size(); ++b)

{

int i = elementDoFs[b];

f double basisl currentElement->basisFunction(b, 0);

f double basis?2 currentElement->basisFunction(a, 0);

FEM Algorithms in C++

f double basisl = currentElement->basisFunction(b, 1);

f double basis2 = currentElement >basisFunction(a, 1);

double value stiffnessMatrix(i, j);
stiffnessMatrix.set(i, j, value
this->a(currentElement, basisl, basis2, basisl_,

basis2));

vector<double

vector<double

m = this->mesh->elements->get noElements();

(int i=0; i<stiffnessMatrix.get noRows(); i)

stiffnessMatrix.set (0, i, 0);

(int j=0; j<stiffnessMatrix.get noColumns(); ++j)

stiffnessMatrix.set(j, 0, 0);

loadVector [0] 0;

for (int i=0; i<stiffnessMatrix.get_noRows(); i)

FEM Algorithms in C++

stiffnessMatrix.set(m, i, 0);
for (int j=0; j<stiffnessMatrix.get_noColumns(); ++j)
stiffnessMatrix.set(j, m, 0);

loadVector [m] R

F_ stiffnessMatrix*u0;
for (int i=0; i<n; i)

loadVector[i] F_[i];

stiffnessMatrix.set(0, 0, 1);

stiffnessMatrix.set(m, m, 1);

this->solution = linearSystems::conjugateGradient(stiffnessMatrix,

loadVector, a_cgTolerance);

this->solution[0]

this->solution [m]

double Solution linear: :1(Element* currentElement, f double Zbasis)

FEM Algorithms in C++

double J currentElement->get_Jacobian();

double integral 0;

std: :vector<double> coordinates;
std: :vector<double> weights;

currentElement->get_elementQuadrature(coordinates, weights);

for (int k=0; k<coordinates.size(); ++k)

{

double b_value = basis(coordinates[k]);
double f value

this->f (currentElement->mapLocalToGlobal (coordinates[k]));

integral b_value+f_value*weights[k]*J;

return integral,;

by

double Solution_linear::a(Element* currentElement, f double Zbasisli,

f double Zbasis2, f double &Zbasisl , f double Zbasis2)

FEM Algorithms in C++

double J currentElement->get_Jacobian();

double integral 0;

std: :vector<double> coordinates;
std: :vector<double> weights;

currentElement->get_elementQuadrature(coordinates, weights);

for (int k=0; k<coordinates.size(); ++k)

{

double b_value = basisl (coordinates[k])

basis2 (coordinatesl[k]);

integral this->epsilon+*b_value*weights[k]/J;

for (int k=0; k<coordinates.size(); ++k)

{

151

152

153

154

155

156

157

158

159

160

Section A FEM Algorithms in C++

double b_value = basisl(coordinates[k])
basis2(coordinates[k]) ;
double c value

this->c(currentElement->mapLocalToGlobal (coordinates[k]));

integral c_value*b_value+weights[k]+J;

return integral;

The comments on this piece of code are hopefully clear enough to describe the process, but

the general idea is:

1. Loop over all elements

(a) For each element, find the associated degrees of freedom
(b) Loop over first combination of degrees of freedom

i. Add value of [(v) (or nonlinear equivalent) to appropriate index in load vector
ii. Loop over second combination of degrees of freedom

A. Add value of a(u, v) (or nonlinear equivalent) to appropriate index in stiff-

ness matrix
2. Find contribution of boundary conditions to the solution
3. Remove boundary condition contribution from the load vector
4. Enforce both boundary conditions

5. Solve the resulting linear (or nonlinear) system

page 103

Appendix B

References

[1] Object Management Group (OMG). OMG Unified Modeling Language. https://www.

omg.org/spec/UML/2.5.1/PDF. [Online; accessed 07-May-2020]. 2017.
[2] Robert A. Adams. Sobolev Spaces. Academic Press, 1975. ISBN: 9780120441501.

[3] Mario Amrein and Thomas P. Wihler. “Fully adaptive Newton-Galerk in methods for
semilinear elliptic partial differential equations”. In: SIAM Journal on Scientific Comput-

ing 37.4 (2015), A1637-A1657.

[4] Harbir Antil, Ricardo H. Nochetoo, and Patrick Sodré. “Optimal control of a free boundary
problem with surface tension effects: a priori error analysis”. In: 53.5 (2015), pp. 2279—

2306.

[5] I Babuska and W.C. Rheinboldt. “Error Estimates for Adaptive Finite Element Computa-

tions”. In: SIAM Journal on Numerical Analysis 15.4 (1978), pp. 736—754.

[6] Amit Bhaya et al. “A cooperative conjugate gradient method for linear systems permit-
ting efficient multi-thread implementation”. In: Computational and Applied Mathemat-

ics 37.2 (2018), pp. 1601-1628. IssN: 18070302.

[7] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer,

2010. I1sBN: 978-0-387-70913-0.

[8] Richard L. Burden and J. Douglas Faires. Numerical Analysis. 9th ed. Cengage Learning,

2010. 1sBN: 9780538733519.
[9] Ward Cheney. Analysis for Applied Mathematics. 2001. ISBN: 978-1-4757-3559-8.

[10] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems. Philadelphia: Society

for Industrial and Applied Mathematics, 2002. 1SBN: 9780898715149.

https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

Section B FEM Algorithms in C++

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Lokenath Debnath and Piotr Mikusifski. Introduction to Hilbert Spaces with Applications.

Academic Press, 2005. ISBN: 978-0122084386.

James F Epperson. An introduction to numerical methods and analysis / James F. Epper-

son. 2nd ed. Wiley, 2013. 1ISBN: 1118367596.

Stanley J. Farlow. An Introduction to Differential Equations and their Applications. Dover

Publications, Inc., 2015. ISBN: 9780486445953.

Stefano Giani and Paul Houston. “Anisotropic hp-adaptive discontinuous Galerkin finite
element methods for compressible fluid flows”. In: International Journal of Numerical

Analysis and Modeling 9.4 (2012), pp. 928-949.

Wei Gong, Michael Hinze, and Zhaojie Zhou. “Finite Element Method and A Priori Er-
ror Estimates for Dirichlet Boundary Control Problems Governed by Parabolic PDEs”. In:
Journal of Scientific Computing 66.3 (2016), pp. 941-967. pol: 10.1007/s10915-015-

0051-2.

Hauke Gravenkamp, Sundararajan Natarajan, and Wolfgang Dornisch. “On the use of
NURBS-based discretizations in the scaled boundary finite element method for wave
propagation problems”. In: Computer Methods in Applied Mechanics and Engineering

315 (2017), pp. 867—-880. ISSN: 00457825. pol: 10.1016/j.cma.2016.11.030.

Hauke Gravenkamp, Albert A. Saputra, and Sascha Duczek. “High-Order Shape Functions
in the Scaled Boundary Finite Element Method Revisited”. In: Archives of Computational

Methods in Engineering (2019). IssN: 18861784. pol: [10.1007/s11831-019-09385-1.

W. Gui and I|. Babuska. “The h, p and h-p Versions of the Finite Element Method in 1
Dimension: Part |. The Error Analysis of the p-Version”. In: Numerische Mathematik 49

(1986), pp. 577-612. 1SSN: 0029599X.

Yigian He, Haitian Yang, and Andrew J. Deeks. “Use of Fourier shape functions in the
scaled boundary method”. In: Engineering Analysis with Boundary Elements 41 (2014),

pp. 152-159. poI1: 10.1016/j .enganabound.2014.01.012.

page 105

https://doi.org/10.1007/s10915-015-0051-2
https://doi.org/10.1007/s10915-015-0051-2
https://doi.org/10.1016/j.cma.2016.11.030
https://doi.org/10.1007/s11831-019-09385-1
https://doi.org/10.1016/j.enganabound.2014.01.012

FEM Algorithms in C++ Section B

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Magnus R. Hestenes and Eduard Stiefel. “Methods of Conjugate Gradients for Solving
Linear Systems”. In: Journal of Research of the National Bureau of Standards 49 (6 1952),

pp. 409-436.

Paul Houston, Christoph Schwab, and Endre Siili. “Stabilized hp-finite element methods
for first-order hyperbolic problems”. In: SIAM Journal on Numerical Analysis 37.5 (2000),

pp. 1618-1643. poI: 10.1137/S0036142998348777.

Paul Houston and Endre Siili. “A note on the design of hp-adaptive finite element meth-
ods for elliptic partial differential equations”. In: Computer Methods in Applied Mechan-

ics and Engineering 194.2-5 SPEC. ISS. (2005), pp. 229-243. IsSSN: 00457825.

Paul Houston and Thomas P Wihler. “An hp-adaptive Newton-Discontinuous-Galerkin
Finite Element Approach for Semilinear Elliptic Boundary Value Problems”. In: Mathe-

matics of Computation 87 (2018), pp. 2641-2674.

https://www.learncpp.com/. 0.3 — Introduction to C/C++. https: //www . learncpp .
com/ cpp-tutorial/introduction-to-cplusplus/. [Online; accessed 5-March-

2020]. 2007.

Claes Johnson. Numerical Solutions of Partial Differential Equations by the Finite Element

Method. Press Syndicate of the University of Cambridge, 1987. ISBN: 0521347580.

Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Univer-

sity Press, 2004. 1sBN: 9780521009249.

William F. Mitchell and Marjorie A. McClain. “A survey of hp-adaptive strategies for el-
liptic partial differential equations”. In: Recent Advances in Computational and Applied

Mathematics 41.1 (2011), pp. 227-258.

A. Mohsen. “A simple solution of the Bratu problem”. In: Computers and Mathematics

with Applications 67.1 (2014), pp. 26-33.

Alexander Petkov. How to explain object-oriented programming concepts to a 6-year-
old. https://www.freecodecamp . org/news/object-oriented-programming-

concepts-21bb035£7260/. [Online; accessed 5-March-2020]. 2018.

page 106

https://doi.org/10.1137/S0036142998348777
https://www.learncpp.com/cpp-tutorial/introduction-to-cplusplus/
https://www.learncpp.com/cpp-tutorial/introduction-to-cplusplus/
https://www.freecodecamp .org/news/object-oriented-programming-concepts-21bb035f7260/
https://www.freecodecamp .org/news/object-oriented-programming-concepts-21bb035f7260/

Section B FEM Algorithms in C++

[30] Rostamian Rouben. “Gaussian Quadrature”. In: Programming Projects in C for Students of
Engineering, Science, and Mathematics. Society for Industrial and Applied Mathematics,

2014, pp. 291-300. 1SBN: 9781611973495.
[31] VYousefSaad. Iterative Methods for Sparse Linear Systems. SIAM, 2003. ISBN: 9780898715347.

[32] Christoph Schwab. p- and hp- Finite Element Methods: Theory and Applications in Solid

and Fluid Mechanics. Oxford Science Publications, 1998. I1SBN: 0198503903.

[33] Pavel Solin, Karel Segeth, and Ivo DoleZel. Higher-Order Finite Element Methods. Chap-

man & Hall/CRC, 2003. ISBN: 9781584884385.

[34] John C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. SIAM,

2004. ISBN: 9780898715675.

[35] Bjarne Stroustrup. The C++ Programming Language. 4th ed. Pearson Education, 2013.

ISBN: 978-0-321-56384-2.

[36] Endre Sili and David F. Mayers. An Introduction to Numerical Analysis. Cambridge Uni-

versity Press, 2003.

[37] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Soft-
ware. http : / /www . gotw . ca/publications/ concurrency-ddj . htm. [Online;

accessed 30-April-2020]. 2009.
[38] Gabor Szegd. Orthogonal Polynomials. American Mathematical Society, 1967.

[39] R. Verfirth. “A posteriori error estimation and adaptive mesh-refinement techniques”.

In: 50.1-3 (1994), pp. 67—83. I1SSN: 0377-0427.

[40] Thu Hang Vu and Andrew J. Deeks. “Blossom-Quad: A non-uniform quadrilateral mesh
generator using a minimum-cost perfect-matching algorithm”. In: International Journal

for Numerical Methods in Engineering 73 (2008), pp. 47-70.

[41] Werner C. Rheinboldt. “On a Theory of Mesh-Refinement Processes”. In: SIAM Journal

on Numerical Analysis 17.6 (1980), pp. 766—778.

[42] Thomas P. Wihler. “An hp-adaptive strategy based on continuous Sobolev embeddings”.
In: Journal of Computational and Applied Mathematics 235.8 (2011), pp. 2731-2739.

ISSN: 03770427. D0I1: 10.1016/j.cam.2010.11.023.
page 107

http://www.gotw.ca/publications/concurrency-ddj.htm
https://doi.org/10.1016/j.cam.2010.11.023

FEM Algorithms in C++ Section B

[43] Henry Wilbraham. “On a certain periodic function”. In: The Cambridge Mathematical

Journal 7 (1848), pp. 198-201.

page 108

	Introduction
	Background
	FEM Notation
	Weak Solutions of PDEs in Rd
	Model Problem
	Lax-Milgram

	hp-FEM

	Implementation: Blakey FEM
	Meshes
	Polynomial Spaces
	Elements
	Linear Solvers
	Nonlinear Solvers
	Quadrature
	Object-Oriented Design
	Simple Numerics

	A Posteriori Error Estimation and Adaptivity
	A Posteriori Error Estimation in 1D
	Example Problems
	h-adaptivity
	p-adaptivity
	hp-adaptivity
	Results Summary

	Nonlinear Problems
	Simple Numerics

	Conclusions
	Code
	blueoneReferences

