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Abstract

This report inves gates efficient algorithms used in approxima ng solu ons to both linear

and nonlinear differen al equa ons with the finite element method.

The report begins by laying the analy cal framework, se ng up some model problems, and

(for the linear case) proving existence and uniqueness of solu ons to these model problems.

All major results in this report are produced using a bespoke so ware package, tled Blakey

FEM, which applies a posteriori error es mates to certain classes of linear and nonlinear model

problems; this applica on leads to efficient adap vity strategies of both meshing and choice

of interpola ng func ons.

This report found that there exist hp-adap ve strategies that yield exponen al convergence

rates between finite element solu ons and true solu ons for various model problems.
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Sec on 1

Introduc on

Differen al equa ons are o en used to explain and predict new facts about everything that

changes con nuously [13] such as weather predic on, planetary orbits, and the best way to

design an aeroplane. It is vital, therefore, that we are able to compute solu ons to these gov-

erning equa ons to some reasonable accuracy.

Many differen al equa ons do not have analy cal solu ons, so one of two approaches is

usually taken instead: solve a modified simpler equa on to approximate the original solu on,

or approximate solu ons directly [8, p. 260]; the la er is the focus of this report, specifically

using numerical methods, as these are the principal choice for those approxima ng solu ons

of differen al equa ons.

Various op ons for numerically approxima ng solu ons to differen al equa ons exist in-

cluding finite differencemethods [34], finite volumemethods [26], and finite elementmethods

[10] which is the method of choice for this report. Finite element methods are advantageous

over othermethods as they can express complicated geometries (for example thework of Giani

et. al [14]) muchmore easily than finite difference methods [8, p. 746]. One can also derive re-

liable and efficient solu on-independent error bounds, that locally give indica ons of the size

of the error [42, p. 2733].

Finite element methods (FEMs) also permit high orders of convergence under the right con-

di ons, through so-called p-refinement [27, p. 228]; however these high convergence rates

can rely on certain amounts of regularity [10, p. 125]. There also exist h-adap ve techniques,

where one can sequen ally change the domain upon which the solu on is approximated [41],

but these techniques can only a ain polynomial convergence rates at best [27, p. 228]. There-

fore, in recent years, techniques concerned with a combina on of the two (called hp-adap ve
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methods) have become increasingly sought and applied effec vely [42, p. 2731]. These hp-

adap ve methods require two main ingredients: computable local error es mators, and steer-

ing criterion (presented in this reportwith a smoothness indicator) [22], whichwill be discussed

in detail in Sec on 4.

The mo va on for hp-adap ve FEM originates in the numerical solu on of prac cal prob-

lems of physics or engineering, where one o en encounters the difficulty that the overall accu-

racy of the numerical approxima on is degraded by local singulari es [39][p. 67]. By calcula ng

local error es mators, one can subsequently use these to enrich the underlying approxima on

space in an adap ve manner [23, p. 2642].

This report found thath-adap ve algorithms could yield high (polynomial) convergence rates

for someproblems, and p-adap ve algorithms could yield high (exponen al) convergence rates.

Whilst these rates were o en found to be more beneficial than their respec ve global refine-

ment algorithms, the hp-adap ve algorithm appeared to perform the best at minimising both

the error (in an appropriate norm) and the degrees of freedom.

Star ng with a basic introduc on in Sec on 2, we will introduce the common nota ons used

in FEManalysis, aswell as introducing someone-dimensionalmodel problemswhich inform the

numerical results in later sec ons. Sec on 3 discusses the specific implementa on features of a

bespoke so ware package wri en for this project, in par cular highligh ng the design choices

made to benefit performance. We then derive local error es mators for a one-dimensional

problem in Sec on 4, paving the way for the h-, p-, and hp-adap ve algorithms, as well as a

comparison of their performance through some numerical experiments. Sec on 5 introduces

a nonlinear problem from which we derive similar error es mators, and apply these to more

numerical experiments. Concluding the report, Sec on 6 highlights the results of this project,

what problems were encountered, and some sugges ons for further work in the area.

page 7



Sec on 2

Background

In this sec on, the mathema cal founda ons for this report are laid out; these informmuch

of the implementa on in Sec on 3 as well as the error analysis in Sec on 4.

2.1 FEM Nota on

We will introduce some preliminary no ons needed for understanding the mathema cs to

finite element methods.

2.1.1 Lp Spaces

In general, it does not make sense to ask what the length of a vector is in a vector space, but

a norm is a concept designed to address this [11, p. 8]. There are many choices of norms in

different vector spaces, as long as they sa sfy some condi ons.

Defini on 2.1 (Norm, similar to [11, def. 1.3.1]).

We define a norm as a func on x→ ∥x∥ some vector space, Ω, to R, provided that it sa sfies

the following condi ons:

• ∥x∥ = 0⇒ x = 0

• ∥λx∥ = |λ|∥x∥,∀x ∈ E, ∀λ ∈ C
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• ∥x+ y∥ ≤ ∥x∥+ ∥y∥,∀x, y ∈ Ω

Wemay also introduce the concept of an inner product, from which we may induce a norm.

Defini on 2.2 (Inner product, similar to [11, def 3.2.1]).

Wedefine an inner product on a vector space, V , as amapping (·, ·) : V ×V → C that sa sfies:

• (x, y) = (y, x), ∀x, y ∈ V

• (αx+ βy, z) = α(x, z) + β(y, z),∀x, y, z ∈ V ;∀α, β ∈ C

• (x, x) ≥ 0, with (x, x) = 0⇔ x = 0

Note that we may induce a norm from the inner product by

∥x∥V :=
√

(x, x),

where x ∈ V .

For ease of nota on, we also make the following two defini ons:

Defini on 2.3 (Range of integers).

We define

[a, b]N := [a, b] ∩ N,

where [a, b] = {x : a ≤ x ∧ x ≤ b, a, b ∈ R}. We do this similarly for (a, b), [a, b), and (a, b]

no ng that we do allow slightly abusive nota on with b =∞.

Defini on 2.4 (Inner product nota on).

We define the inner product, for u, v ∈ V as

(u, v) :=

∫
Ω

uv dx.

page 9
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Lp spaces, commonly referred to as Lebesgue spaces, refer to the space of func ons where

some integral of a func on is finite, as shown in the following defini on.

Defini on 2.5 (Lp space, [9, p. 409]).

For u a complex-valued, locally integrable func on, the Lp space is defined as:

L2(Ω) := {u : ∥u∥L2(Ω) <∞},

with norm

∥u∥L2(Ω) :=

(∫
Ω

|u(x)|pdx
) 1

p

.

2.1.2 Weak Deriva ves and FEMs

When dealing with finite element methods, we will o en come across func ons such as

u(x) =


x if x > 0

−x if x ≤ 0,

where the func on may be con nuous but the deriva ve may be discon nuous at a point. We

therefore may introduce the concept of a weak deriva ve, as well as some other nota on that

we will use.

Defini on 2.6 (Mul -index).

If α = (α1, ..., αm) is anm-tuple where each αi ∈ N0, then we call α a mul index and denote

xα as the monomial

xα1 ...xαm

and similarlyDα as

Dα1
1 ...D

αm
m

whereDi =
∂

∂xj
[2, p. 1]. We also denote |α| = α1 + ...+ αm.

Defini on 2.7 (Weak deriva ve).
page 10
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For u ∈ V , where
∫
Ω
|u| dx, we define w as the αth weak deriva ve u provided that it sa sfies

∫
Ω

u(x)Dαv(x) dx = (−1)|α|
∫
Ω

w(x)v(x) dx,

for all v ∈ C∞
0 (Ω), whereC∞

0 (Ω) is the space of infinitely-differen able func onswith compact

support on Ω and α defines a mul -index.

Sobolev spaces act as an extension to the Lp spaces with the inclusion of some regularity on

weak deriva ves of func ons.

Defini on 2.8 (Sobolev space, [33, p. 2]).

For k ∈ [0,∞)N and Ω ⊆ Rm, with Lipschitz-con nuous boundary, we define:

Hk(Ω) := {u ∈ L2(Ω) : Dαu ∈ L2(Ω),∀|α| ≤ k},

which is equipped with norm

∥u∥Hk(Ω) :=

∑
|α|≤k

∥Dαu∥2L2(Ω)

 1
2

,

and a semi-norm of

|u|Hk(Ω) :=

∑
|α|=k

∥Dαu∥2L2(Ω)

 1
2

.

We note that Hk(Ω) is a Hilbert space, and is o en referred to as the one-dimensional

Sobolev space of kth order on Ω.

The Cauchy-Schwarz inequality is very useful for the analysis of the a posteriori error bound

in Sec on 4, so we define it here: For u, v ∈ V , V a vector space with some norm:

|(u, v)V | ≤ ∥u∥V ∥v∥V , (2.1)

where (·, ·)V is an inner product on V , and ∥·∥V is a norm on V .
page 11
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We also have the triangle inequality: For x, y ∈ V , where V is a vector space with an inner

product, we have

∥u+ v∥ ≤ ∥u∥+ ∥v∥, (2.2)

as stated by Debnath et. al [11, co. 3.2.10].

We also state the following lemma, which follows directly from the defini on of ∥·∥H1(Ω).

Lemma 2.1.

For any u ∈ H1(Ω) we have

∥u∥L2(Ω) ≤ ∥u∥H1(Ω).

We now have the mathema cal tools to define what a finite element space describes. We

state it here in its most general form, but in prac cal terms we will deal directly with these

individual aspects of the finite element without men on of this formal defini on.

Defini on 2.9 (Finite element, [10, p. 78]).

A finite element in Rd is a tripleK = (Ω, P,Σ), where:

• Ω is a closed subset of Rd, int Ω ̸= ∅ and ∂Ω is Lipschitz-con nuous;

• P is a space of func ons fromK to R;

• Σ := {ϕi}Ni is a finite set of linearly independent linear forms, ϕi, defined overP ; it is also

assumed that Σ is P -unisolvent. That is: ∀αi ∈ R,∃!p ∈ P s.t. ϕi(p) = αi∀i ∈ [1, N ]N.

We call Σ the degrees of freedom (DoF).

Finite element methods rely heavily on the use of integra on by parts; we will state the

divergence theorem here, then state prove integra on by parts.

Theorem 2.1 (Divergence theorem).

For Ω ⊆ Rn compact and ∂Ω piecewise smooth, u sufficiently differen able in Ω, and n the

page 12
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outward-poin ng unit normal at each point on ∂Ω we have

∫
Ω

∇u dx ≡
∮
∂Ω

un dS.

From the divergence theorem, given in Theorem 2.1, we can now construct a proof of inte-

gra on by parts.

Theorem 2.2 (Integra on by parts).

Taking Ω and n as in Theorem 2.1, we have

∫
Ω

u∇u dx ≡
∫
∂Ω

uvndS −
∫
Ω

v∇u dx,

where u and v are sufficiently differen able in Ω.

Proof. From Theorem 2.1 we may take u→ uv. This yields

∫
Ω

∇uv dx =

∮
∂Ω

(uv)n dS

.

It is convenient to now write each vector in terms of its individual components, denoted by

index i: ∫
Ω

∂

∂xi
(uivi) dx =

∮
∂Ω

(uivi)ni dS, ∀i ∈ [1, n]N.

By the product rule for differen a on we have

∫
Ω

∂ui
∂xi

vi dx+

∫
Ω

ui
∂vi
∂xi

dx =

∮
∂Ω

(uivi)ni dS, ∀i ∈ [1, n]N,

and returning to the original nota on we have

∫
Ω

(∇u)v dx+
∫
Ω

u(∇v) dx =

∮
∂Ω

uvn dS.

page 13
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A er some rearrangement we have the result:

∫
Ω

u∇v dx =

∫
∂Ω

uvn dS −
∫
Ω

v∇u dx.

2.2 Weak Solu ons of PDEs in Rd

For solving par al differen al equa ons we ul mately want to find the solu on, u, of the

equa on in some space, V . Mathema cally we want to find u ∈ V s.t.

Lu = f, in Ω (2.3)

where L is some differen al operator and f is some forcing func on independent of u. We

may instead consider a similar problem—which we refer to as the weak formula on—which

is roughly constructed through the following steps:

1. Mul ply Equa on (2.3) by a test func on, v ∈ V ;

2. Integrate the resul ng equa on over the domain, Ω;

3. Apply integra on by parts to reduce the highest order of deriva on on u and v;

4. Apply appropriate boundary condi ons to u and v.

This weak formula onwill yield solu ons for which not all deriva vesmay exist (ormay have

weak deriva ves). We call these solu ons weak solu ons (opposed to strong solu ons, which

sa sfy the criteria in Defini on 2.7). A specific example of a weak formula on is calculated in

the following sec on.

page 14
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2.2.1 Model Problem

We restrict ourselves for the remainder of the report to consider only two model problems:

a linear and a nonlinear problem. In this sec on, we will only state the linear PDE problem and

derive its weak formula on, and then prove the existence and uniqueness of solu ons. The

nonlinear problem will be introduced in Sec on 5.

We consider the par al differen al equa on stated in Equa on (2.4), i.e., given a bounded

Lipschitz domain Ω ⊆ Rd, d ≥ 1, we seek u such that

−ϵ∆u+ cu = f(x), x ∈ Ω, (2.4a)

u = 0, on ∂Ω. (2.4b)

Here, ϵ > 0 and c ≥ 0 and f represent the reac on and forcing terms, respec vely. This

is a rela vely standard model equa on and similar problems are also chosen by Wihler [42],

Houston et. al [21], and Mitchell et. al [27].

For this problem, we seek u in the func on space H1
0 (Ω) =: V ; note that this imposes our

boundary condi ons, and assumes sufficient regularity of the solu on, u.

To derive the weak formula on of Equa on (2.4) we first mul ply Equa on (2.4a) by v ∈

H1
0 (Ω) and integrate over Ω, which yields:

−ϵ
∫
Ω

∆uv dx+

∫
Ω

cuv dx =

∫
Ω

fv dx, ∀v ∈ V.

We no ce now that u has two deriva ves (from the Laplacian) in the first term of this ex-

pression and v has zero. We can therefore apply integra on by parts, as given in Theorem 2.2
page 15
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to give

ϵ

∫
Ω

∇u · ∇v dx−
∫
∂Ω

(∇u · n)v ds+
∫
Ω

cuv dx =

∫
Ω

fv dx, ∀v ∈ V,

where n denotes the unit outward normal vector to the boundary, ∂Ω. No ng that v ∈ V and

hence v = 0 on ∂Ω we get: find u ∈ V such that

ϵ

∫
Ω

∇u · ∇v dx+
∫
Ω

cuv dx =

∫
Ω

fv dx, ∀v ∈ V.

Rewri ng the above equa on in inner product nota on, the weak formula on of Equa on

(2.4) is given by: find u ∈ V such that

ϵ(∇u,∇v) + (cu, v) = (f, v), ∀v ∈ V. (2.5)

No ce that this is s ll an infinite-dimensional problem which will be projected to a finite-

dimensional space later.

We will see in Sec on 2.3 that this model problem has a solu on that is unique.

2.2.2 Lax-Milgram

The Lax-Milgram theorem, named a er the pair that solved it in 1954, is a pivotal theorem

that guarantees existence and uniqueness of solu ons to the problems described in Sec on

2.2.1.

Theorem 2.3 (Lax-Milgram, [11, p. 157]).

Let a be a bounded, coercive, bilinear func onal on a Hilbert space, V . For every bounded linear

func onal l on V , there exists a unique u ∈ V such that

a(u, v) = l(v), ∀v ∈ V.

page 16
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We may note that to show boundedness, we can instead show that a and l are con nuous.

Therefore to sa sfy Theorem 2.3 for a bilinear func onal, a, and a linear func onal, l, we just

need to find c0, c1, c2 ∈ R s.t.

• Coercivity of a: a(u, u) ≤ c0∥u∥2H1(Ω);

• Con nuity of a: |a(u, v)| ≤ c1∥u∥H1(Ω)∥v∥H1(Ω);

• Con nuity of l: |l(v)| ≤ c2∥v∥H1(Ω).

We will now use the Lax-Milgram theorem to prove uniqueness and existence of the linear

model problem outlined in Sec on 2.2.1.

Lemma 2.2 (Uniqueness and existence of linear model problem).

Equa on (2.4) admits a solu on that is unique.

Proof. We begin by taking

a(u, v) := ϵ(∇u,∇v) + (cu, v)

and

l(v) := (f, v)

from Equa on (2.5), where u, v ∈ H1(Ω).

From the defini ons of a and l we see immediately that they are respec vely bilinear and

linear in their arguments.

To show coercivity of a, we see that a(u, u) = ϵ∥u∥L2(Ω) + ∥
√
cu∥L2(Ω).

Let cs := maxx(
√
c(x)). Then:

a(u, u) = ϵ∥u∥2L2(Ω) +
∥∥√cu∥∥2

L2(Ω)

≤ ϵ∥u∥2L2(Ω) + c2s∥u∥
2
L2(Ω)

≤ c0/2∥u∥2L2(Ω) + c0/2∥u∥2L2(Ω),

page 17
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where we have now defined c0 := 2max(ϵ, c2s). No ng Lemma 2.1, we have coercivity:

a(u, v) ≤ c0∥u∥2H1(Ω).

For con nuity of a, let us recall that a(u, v) ≡ ϵ(∇u,∇v) + (cu, v).

By the triangle inequality from Equa on (2.2) we have

|a(u, v)| = |ϵ(∇u,∇v) + (cu, v)|

≤ |ϵ(∇u,∇v)|+ |(cu, v)|

= ϵ|(∇u,∇v)|+ cm|(cu, v)|,

no ng that ϵ > 0 and cm := maxx |c(x)|.

By employing the Cauchy-Schwarz inequality from Equa on (2.1) we get

|a(u, v)| ≤ ϵ∥∇u∥L2(Ω)∥∇v∥L2(Ω) + cm∥u∥L2(Ω)∥v∥L2(Ω).

By le ng c1 := maxx(ϵ, cm) we have con nuity:

|a(u, v)| ≤ ϵ∥∇u∥L2(Ω)∥∇v∥L2(Ω) + cm∥u∥L2(Ω)∥v∥L2(Ω)

≤ c1∥∇u∥L2(Ω)∥∇v∥L2(Ω) + c1∥u∥L2(Ω)∥v∥L2(Ω)

≤ c1∥∇u∥L2(Ω)∥∇v∥L2(Ω) + c1∥u∥L2(Ω)∥v∥L2(Ω)

+ c1∥∇u∥L2(Ω)∥v∥L2(Ω) + c1∥u∥L2(Ω)∥∇v∥L2(Ω)

≤ c1(∥u∥2L2(Ω) + ∥∇u∥
2
L2(Ω))

1
2 (∥v∥2L2(Ω) + ∥∇v∥

2
L2(Ω))

= c1∥u∥H1(Ω)∥v∥H1(Ω).

page 18
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To show con nuity of l, we first recall the defini on of l as

l(v) ≡ (f, v).

Employing again the Cauchy-Schwarz inequality gives

|l(v)| = |(f, v)|

≤ ∥f∥L2(Ω)∥v∥L2(Ω).

No ng Lemma 2.1 gives

|l(v)| ≤ ∥f∥L2(Ω)∥v∥H1(Ω),

and defining c2 := ∥f∥L2(Ω) we have

|l(v)| ≤ c2∥v∥H1(Ω),

which shows that l(v) is a con nuous func onal.

We have shown that the bilinear func onal, a, is coercive and con nuous inH1(Ω), and we

have shown that the linear func onal, l, is con nuous inH1(Ω). By Theorem 2.3 we have that

∃!u ∈ H1(Ω) s.t.

a(u, v) = l(v), ∀v ∈ H1(Ω),

which is the same as saying that Equa on (2.4) admits a unique solu on.

2.3 hp-FEM

When se ng upour FEMversion of the problem, it is helpful to set it up in such away that the

size, shape, and degree of the polynomial interpolant on each elementmay vary independently

of any other element. We make the following defini ons.
page 19
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Defini on 2.10 (Polynomial space).

Akin to the defini on in [10], PP (Ω) = {u(x) : u is a polynomial of degree r ≤ P on Ω}.

We could have chosen, for example, B-splines or Fourier series to express our solu ons, but

we have chosen polynomials here.

Now we have a general defini on of an FEM where we may freely choose the width of ele-

ments (h) and the polynomial degrees of the interpolants (p), and hence the name of hp-FEMs.

We create a mesh in one dimension which is the set of coordinates, {xi}Ni=0, that span Ω.

We note that the coordinates do not have to be evenly spaced, but we do require that they are

ordered x0 < ... < xN .

x0 x1 ... xN−1 xN

We take Equa on 2.5, which describes an infinite-dimensional problem, and we now re-

strict to a finite-dimensional problem. For some set of basis func ons, {ϕj}Mj=0 that lie in

PP (xi−1, xi) for some i ∈ [1, N ], we now define

Vh := {u ∈ H1(Ω) : u|(xi−1,xi) ∈ PP (xi−1, xi), i ∈ [1, N ]N},

so that the solu on restricted to each element is a polynomial. Our new problem, which we

refer to as the finite element approxima on, is: find uh,p ∈ Vh such that

ϵ(∇uh,p,∇vh) + (cuh,p, vh) = (f, vh), ∀vh ∈ Vh. (2.6)

We stress here that this is now a finite-dimensional problem, which can be approximated

computa onally.
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Implementa on: Blakey FEM

Many FEM solvers already exist such as Autodesk Simula on, FEFLOW, Deal II, FEniCS, and

Goma; these so ware packages are wri en in a range of different languages, all set up to solve

slightly different problems, making use of specific language features. However many of these

so ware packages fail to make use of hp-adap ve methods, which can lead to very high orders

of convergence if used correctly [42].

Our implementa on is called Blakey FEM and is wri en in C++. C++ is low-level and gives

the programmer control of memory management, which allows for more efficient algorithms

[24]. It is also an object-oriented language: the object-oriented paradigm is convenient for us

humans, as its primary focus is to define the structure of how the data will be organised and

is o en likened to real life examples. The intui veness of this organisa on would allow a dog

class, say, to have a method Dog.bark(). This intui veness is also o en extended through

a technique called abstrac on, which allows other programmers or users to deal only with

interfaces of classes, and not the specific implementa on; this may mean to say that we don’t

really care how a dog barks, as long as it barks.

In real life we may encounter objects that are very similar and share some common logic;

the object-oriented paradigm gives us a mechanism called inheritance which allows for some

methods and data to be wri en in the super-class and be reused in the sub-classes. This can

be best described by a specific example. Inspired from [29], we may make an inheritance dia-

gram of structures that we may encounter in our everyday lives; this idea then extends to how

we may construct classes in an object-oriented language. Take Figure 3.1, for example, which

shows an inheritance diagram of some animals along with some methods. No ce that the

middle por ons of the nodes indicate structural proper es (including data), and the bo om
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por ons indicate methods (manipulators to the data).

We see from Figure 3.1 that all derived classes of Animal (i.e. Mammal, Cat, Reptile, Human,

and Snake) all share, among others, the property hungerLevel (so every animal can be hun-

gry). However it only makes sense for Cat to have the method meow(), for obvious cat-related

reasons.

Animal
hungerLevel
energyLevel
eat()

Mammal
skinColour
needsToSweat

Cat
clawLength
meow()

Human
languageSpoken
sayHello()

Rep le
scalesShedded

Snake
poisonLevel
shedSkin()
bite()

Figure 3.1: An example of an inheritance diagram with different animals and categories of animals.

The code structure and implementa on choices of Blakey FEMare heavily influenced by [33],

which details choices for all aspects needed to be considered in an FEMprogram. The following

sec ons describe the choicesmade for implemen ng the code including details regarding linear

solvers, quadrature calcula on, and the specific object-oriented design structure. We note,

however, that Blakey FEM is currently a one-dimensional FEM package — but design choices

have been made that would support easy extensibility to higher dimensions.
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3.1 Meshes

A mesh describes the discre sed version of the domain upon which we are solving and —

depending upon how the domain is discre sed— can actually have a huge impact upon on our

numerical approxima on of the solu on (as demonstrated in the work of Wilbraham [43], but

now commonly referred to as Gibbs phenomenon).

With our implementa onwe decided tomake a class Meshwhich basically acts as a container

for the elements, for which a class structure is displayed in Figure 3.2. The declara ons for this

class can be found at ./src/mesh.hpp and the defini ons can be found at ./src/mesh.cpp,

through the GitHub repository give on Page 2.

Mesh
- noElements : int
- noNodes : int
- dimProblem : int
- ownsElements : bool
+ elements : Elements*
+ Mesh(a_noElements : int)
+ Mesh(a_elements : Elements)
+ Mesh()
+ get_dimProblem() : int
+ get_noElements() : int
+ get_noNodes() : int

Figure 3.2: Class structure for Mesh.

There are two constructors: Mesh(int a_noElements) and Mesh(Elements a_elements) .

The former constructs a mesh on [0, 1]with elements of equal width; and the la er constructs

a mesh with the provided elements, which the user should populate manually for more control

over the mesh.

The Elements* elements property is a pointer to an instance of the Elements class de-

scribed in the next sec on. These are populated either through the first constructor or refer-

enced by the second constructor.

Theother proper es are rela vely self-explanatory, with the relevant ge ers: int noElements
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is the number of elements in the mesh, int noNodes is the number of nodes in the mesh,

and int dimProblem is the dimension of the problem. We note that the dimension of the

problem for the implementa on in this report is fixed as 1; however, due to the object-oriented

techniques and careful design of the implementa on, it would be rela vely easy to implement

meshes on higher dimensions — and this parameter in the class would help to facilitate this.

3.2 Polynomial Spaces

With the hp-FEMs that we are implemen ng, we have chosen the shape func ons as poly-

nomials — and we need to be able to describe these polynomial basis func ons in general for

any order exponent and for any order deriva ve. We could have also chosen func ons besides

polynomials, such as Fourier shape func ons [19] or B-splines (although technically polynomi-

als, they don’t behave in the same way with degrees of freedom) [16, 17]; however we have

chosen polynomials due to their high convergence rates and resul ng reduc on in the number

of degrees of freedom [17, p. 1].

As well as the choice of the type of func ons, we now have a further choice to make: what

kinds of polynomials we want, remembering that a certain amount of regularity will already be

imposed, depending upon the space in which we are seeking solu ons. An obvious choice of

polynomials would be Lagrange or Legendre polynomials, but we have instead chosen to use

Loba o shape func ons, employed in [33, p. 25] and [40, p. 48]; this choice of basis func ons

gives us a hierarchical basis set.

We begin by introducing the Legendre polynomials in one dimension as given by

L0(x) = 1, (3.1a)

L1(x) = x, (3.1b)

Ln(x) =
2n− 1

n
xLn−1(x)−

n− 1

n
Ln−2(x), n ≥ 2, (3.1c)
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cf. [33, p. 22]. We can also define the Loba o shape func ons by

l0(x) =
1− x
2

, (3.2a)

l1(x) =
1 + x

2
, (3.2b)

ln(x) =
√
n− 1/2

∫ x

−1

Ln−1(ξ) dξ, n ≥ 2, (3.2c)

cf. [33, p. 25]. We no ce that Legendre polynomials are orthogonal, meaning that we have∫ 1

−1
Ln(x) dx = 0, n ≥ 1. This helpfully means that ln(1) = 0,∀n ≥ 2. We also no ce by

defini on that ln(−1) = 0,∀n ≥ 2, so the Loba o shape func ons vanish at both sides of the

domain for n ≥ 2.

We have chosen to implement these Loba o shape func ons as our basis func ons within

the Element class, which is described more in Sec on 3.3.

We note that these func ons are defined on [−1, 1], which will be the domain for our one-

dimensional reference element. For actual implementa on, we can define the Legendre poly-

nomials rela vely easily with the recursive formula given in Equa on (3.1), and we do so within

the quadrature namespace (mainly for ease when defining the Gauss-Legendre quadrature).

However, the defini ons of the Loba o func ons are a li le more tricky because of the integral

that appears in the defini on. With this in mind we state the following result.

Lemma 3.1.

The nth, n ≥ 2, Loba o shape func on can be wri en as

ln(x) ≡
√

2n− 1

2

(
Ln+1(x)− Ln−1(x)

)
.
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Proof. By [33, eq. 1.43], we know that

Ln(ξ) ≡
d
dξ

(
Ln+1(ξ)− Ln−1(ξ)

)
.

Integra ng this on [−1, x] gives

∫ x

−1

Ln(ξ) dξ =
(
Ln+1(x)− Ln−1(x)

)
−
(
Ln+1(−1)− Ln−1(−1)

)
=
(
Ln+1(x)− Ln−1(x)

)
−
(
(−1)n+1 − (−1)n−1

)
=
(
Ln+1(x)− Ln−1(x)

)
,

which, by our defini on in Equa on (3.2), is simply

ln(x) =
√
n− 1/2

(
Ln+1(x)− Ln−1(x)

)
.

Rearranging gives the desired result.

From Equa on (3.1) we can calculate Legendre polynomials generally, but not their deriva-

ves. The deriva ves for n = 0, 1 are straigh orward, but not for n ≥ 2. Hence, we need

to determine how to compute the deriva ve of the Legendre polynomials for any order; this

is required for the proceeding hp-adap vity algorithm. By following a proof by induc on from

Lemma 3.2 we can ul mately construct such a method.

Lemma 3.2.

The kth, k ≥ 1, deriva ve of a one-dimensional Legendre polynomial of the nth, n ≥ 2, order

is defined by

dk

dxk
Ln(x) =

2n− 1

n− 1
xL

(k)
n−1(x)−

n

n− 1
L
(k)
n−2(x) + (k − 1)

2n− 1

n− 1
L
(k−1)
n−1 (x).
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Proof. We first test for the base case (k = 1). From this, we get

L′
n(x) =

2n− 1

n− 1
xL′

n−1(x)−
n

n− 1
L′
n−2(x),

which is true by differen a ng and rearranging Equa on (3.1c) and employing

Ln(x) =
d
dx

(
Ln+1(x)− Ln−1(x)

)
,

cf. the proof of Lemma 3.1 (and [33, eq. 1.43]).

Let’s now assume that Lemma 3.2 holds for some k ≥ 2, which is just

dk

dxk
Ln(x) =

2n− 1

n− 1
xL

(k)
n−1(x)−

n

n− 1
L
(k)
n−2(x) + (k − 1)

2n− 1

n− 1
L
(k−1)
n−1 (x).

Differen a ng this again gives

dk+1

dxk+1
Ln(x) =

2n− 1

n− 1

d
dx

(
xL

(k)
n−1(x)

)
− n

n− 1
L
(k+1)
n−2 (x) + (k − 1)

2n− 1

n− 1
L
(k)
n−1(x).

By the product rule we may expand the differen a on into the first RHS term, giving

dk+1

dxk+1
Ln(x) =

2n− 1

n− 1

(
L
(k)
n−1(x) + xL

(k+1)
n−1 (x)

)
− n

n− 1
L
(k+1)
n−2 (x) + (k − 1)

2n− 1

n− 1
L
(k)
n−1(x)

=
2n− 1

n− 1
xL

(k+1)
n−1 (x)− n

n− 1
L
(k+1)
n−2 (x) + k

2n− 1

n− 1
L
(k)
n−1(x),

which gives the desired result.

By the principles of mathema cal induc on, we have shown that the lemma is true for the

base case and induc ve case, and so we conclude that the lemma is true for all k ≥ 1.
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Since the Loba o shape func ons are calculated by a linear combina on of Legendre poly-

nomials (by Lemma 3.1), we now have a method for calcula ng our basis func ons of any or-

der and any deriva on. The method f_double Element:basisFunction(int n, int i)

in the Element class calculates any deriva ve of any order basis func on, making use of the

f_double quadrature::legendrePolynomial(int n, int i) method in thequadrature

namespace. Note that the Legendre polynomials and their deriva ves calculated here are one

dimensional.

3.3 Elements

The element class was originally designed to be an abstract type, where children classes

could take various forms in various dimensions (for example intervals in 1D, or triangles or

squares in 2D, or tetrahedra or tetrahedra in 3D). Since Blakey FEM has been designed to solve

1D problems only, we have instead decided to make our element class a concrete class that

implements only intervals.

As well as crea ng a class named Elementwe also decided to create a class called Elements

which is essen ally a wrapper for many Element instances. Both of these classes are described

in Figure 3.3.

There are two constructors for this class: Element(Element element) which is a copy

constructor (and has same logic as the equals operator), and Element(int elementNo, int

noNodes, vector<int> nodeIndices, vector<double>* nodeCoordinates, int

polynomialDegree) which provides the class with an element number, the number of nodes

for the element (although in 1D this will be fixed to 2), the indices of the nodes, a pointer to

the node coordinates vector, and the polynomial degree for this element.

The destructor of Element does not do anything special: but it certainly does not delete the

storage at nodeCoordinates, which belongs to the Elements container. N.b. the Element and

Elements classes actually perform very different func ons in this implementa on.
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Element
- elementNo : int
- noNodes : int
- polynomialDegree : int
- nodeIndices : vector<int>
- nodeCoordinates : vector<double>*
- init_Element(int elementNo, int noNodes, vector<int> nodeIndices, vector<double>*
nodeCoordinates, int polynomialDegree) : void
+ Element(Element element)
+ Element(int elementNo, int noNodes, vector<int> nodeIndices, vector<double>* nodeCo-
ordinates, int polynomialDegree)
+ Element()
+ operator=(Element element) : Element
+ mapLocalToGlobal(double xi) : double
+ basisFunc on(int n, int i) : f_double
+ get_Jacobian() : double
+ get_elementNo() : int
+ get_noNodes() : int
+ get_nodeCoordinates() : vector<double>
+ get_rawNodeCoordinates() : vector<double>*
+ get_nodeIndices() : vector<int>
+ get_elementQuadrature(vector<double> coordinates, vector<double> weights) : void
+ get_polynomialDegree() : int
+ set_polynomialDegree(int p) : void

Figure 3.3: Class structure for Element.

The method double mapLocalToGlobal(double xi) takes a point on the local domain

(on [−1, 1]) and calculates where that point corresponds to on the global domain; in 1D this is

just a simple linear mapping f : [−1, 1] → [xi−1, xi], where xi−1 and xi are the node coordi-

nates.

The basisFunction method, as discussed in Sec on 3.2, calculates the basis func on on

the current element for any given degree and deriva ve. We note that the basis func ons

remain on the reference element [−1, 1].
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3.4 Linear Solvers

Linear systems arise in various different areas, and are of par cular importance computa-

onally thanks to the methods that exist to approximate solu ons to the systems. Directly

calcula ng an inverse to an N × N matrix can take O(N3) opera ons, so for large linear sys-

tems this could take a very long me. In prac ce we don’t need to find the explicit inverse and

can go straight to seeking a solu on to the systemprovidedwe have a right-hand-side; however

other computa onal algorithms such as Gaussian elimina on also take O(N3) opera ons [8,

p. 368]. For diagonal systemswe can actually find a solu on inO(N)whenwe are dealing with

linear elements for FEMs in 1D, but higher-order FEMs no longer result in diagonal matrices.

We can therefore turn to itera ve techniques, which can provide solu ons to some given

accuracy. For large sparse systems (like the system resul ng from our FEM calcula ons) the

conjugate gradient is generally a well-favoured method [8, p. 479]. We have therefore chosen

to use a conjugate gradient solver with some tolerance (usually set to 1× 10−15) for solving all

linear systems that arise and is defined in vector<double>

linearSystems::conjugateGradient(Matrix<double> M, vector<double> b,

double tolerance) . We note that we could also make use of the Thomas algorithm for

solving diagonal systems arising from 1D linear FEM calcula ons; however we decided that

the performance boost for using a separate algorithm for solving a linear system for perhaps

only the first few itera ons was seen as too small to jus fy proper implementa on. We have

however implemented the Thomas algorithm in void linearSystems::

thomasInvert(vector<double> lower, vector<double> diagonal

vector<double> upper, vector<double> load, vector<double> solution) in case

this wanted to be developed further in the future. The conjugate gradient algorithm is shown

in Equa ons (3.3), as defined in [6, p. 1605], where we choose d0 = r0 = Ax0 − b. We

note that each xk is our approxima on of the solu on, and the termina ng condi on for the
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algorithm is when rk · rk is below some given tolerance (usually 1× 10−15).

xk+1 = xk + αkdk (3.3a)

αk = −
rT
kdk

dT
kAdk

(3.3b)

dk+1 = rk+1 + βkdk (3.3c)

βk = −
rT
k+1Adk

dT
kAdk

(3.3d)

We have implemented the conjugate gradient method described above as done in [20], but

we note that we could have computa onally implemented a be er algorithm: one that per-

mits parallelisa on. Computers in recent years have, for one reason or another, been geared to

having more cores than a faster processing clock speed [37]; however the standard conjugate

gradient algorithm is not suitable for thesemul -core processors as each new direc on (dk) re-

quires the new residue (rk) to have been calculated [6, p. 1605]. We therefore could have used

the coopera ve conjugate gradient method provided by Bhaya et. al to make use of the many

cores and threads in a central processing unit, but for the purposes of this project we will just

use the regular conjugate gradient method as the 1D simula ons aren’t too computa onally

demanding.

We note that to solve our linear systems abovewe need a Matrix data structure, asmatrices

are not built-in to the programming language — this is due to use cases for matrices widely

differing from programmer-to-programmer. We have therefore implemented our own class

hierarchy to store matrix details relevant to our problems, as shown in Figure 3.4. The Matrix

class is itself abstract, and its descendant classes implement many of its method. We have

implemented a child class called Matrix_full which stores the matrix elements in a single

vector, items, whereby the index at which an element value is stored is calculated rela vely

easily from two coordinate values; this is akin to the approach taken by the creator of C++,
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Bjarne Stroustrup, in his comprehensive guide to the language [35, p. 831] to minimise storage

required.

Now that we have this generic structure for our matrix classes, it would be rela vely easy to

add a sparsematrix data structure, say Matrix_sparse, with amethod like compressed sparse

row format [31, p. 93]. For large sparse matrices, this method aims to reduce the total amount

of storage needed in computer memory.

We also no ce that the Matrix class and its descendants are implemented generally for a

type, T, using C++’s templates feature. We have chosen to do this for several reasons: firstly,

this allows a single implementa on of a matrix for any given type — for example, a matrix of

type double or int; secondly, this approach reduces redundancy of code and allows features

for all types of matrix to be added with rela ve ease; and thirdly, this approach saves on both

run me and space efficiency [35, p. 665].

3.5 Nonlinear Solvers

Later in the report, in Sec on 5, we introduce a nonlinearmodel problem (rather than a linear

problem). Weneed a nonlinear solver to solve the resul ng nonlinear system. Although not the

primary concern for this stage in the report, it’s important that we cover the implementa on

side of this problem. We have chosen to implement a Newton solver for this solving process,

thanks to its quadra c convergence rates close to roots [36, p. 119].

By explicitly calcula ng the necessary func on and deriva ve needed for our nonlinear prob-

lem, we use the Newton’smethod in void Solution_nonlinear::Solve_single(double

cgTolerance, vector<double> uPrev, vector<double> uNext, double difference) .

This performs one Newton step, which we can run mul ple mes in the void

Solution_nonlinear::Solve(double cgTolerance, double NewtonTolerance,

vector<double> u0) to find a root within a certain specified tolerance.
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Matrix «abstract»
[NO DATA]
# resize(int noNonZeros) : void
# item(int x, int y) : T
+ get_noRows() : int
+ get_noColumns() : int
+ get_diagonal() : vector<T>
+ set(int x, int y, T value) : void

Matrix_full
# items : T
# noColumns : int
# noRows : int
# resize(int noNonZeros) : void
# get_index(int x, int y) : int
# item(int x, int y) : T
+ Matrix_full(int N)
+ Matrix_full(int noColumns, int noRows)
+ Matrix_full(int noColumns, int noRows, T ini al)
+ Matrix_full(Matrix M)
+ get_noRows() : int
+ get_noColumns() : int
+ set(int x, int y, T value) : void

Figure 3.4: Class structure for Matrix and its descendants.

3.6 Quadrature

All FEMs will need to (at some point at least) find the value of the one-dimensional definite

integral

I(f) =

∫ b

a

f(x) dx.

We are interested in finding numerical methods that yield accurate approxima ons to I [12].

We call the numerical approxima on to a definite integral a quadrature method, and we will in

par cular consider quadratures of the form

In(f) =
n∑

i=1

wif(xi),

where we call wi the quadrature weights and xi the quadrature points for i ∈ [1, n]N.
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Gaussian quadrature gives us the best choices of weights and points for approxima ng the

integra on of a func on of one variable numerically on an interval [30]; Gaussian quadrature

can also be derived for integra on of func ons in more than one dimension (useful in mul -

dimensional FEMs), but we will restrict ourselves to considering one dimension.

We define Gaussian quadrature of order n, n ≥ 1, as done in [33], and more universally

known as Gauss-Legendre quadrature. By taking Ln to mean the nth order Legendre polyno-

mial as defined in [33, p. 22] (c.f. Sec on 3.2), and no cing that Ln has n zeros, we define the

ith Gaussian weights and points given by:

ξn,i s.t. Ln(ξn,i) = 0, (3.4a)

wn,i =
2

(1− ξ2n,i)L′
n(ξ)

2
, i ∈ [1, n]N. (3.4b)

To allow for exact integra on of polynomials of a chosen degree, we need to be able to

calculate these points and weights for any given n. Therefore, Blakey FEM implements:

• f_double quadrature::legendrePolynomial(int n, int i) — returns a func-

on pointer to the ith deriva ve of the nth-degree Legendre polynomial;

• void quadrature::legendrePolynomialRoots(int n, vector<double> roots)

—populates rootswith the n roots of the nth degree Legendre polynomial by a Newton

method within a residual tolerance of 10−5;

• double quadrature::get_gaussLegendrePoint(int n, int i) —returns the ith

Gaussian point of nth order;

• double quadrature::get_gaussLegendreWeight(int n, int i) — returns the

ith Gaussian weight of nth order.

Since the root finding of the zeros of the Legendre polynomials are rela vely expensive, we

also have an intelligent cache built-in to the code so that no point or weight is generated more
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than once — when calculated for the first me they are stored in a dic onary data structure.

Whilst this has an immediate computa onal penalty with the lookup of various values in the

dic onary, it is a much lower cost than compu ng the points and weights. It is so vital in de-

creasing the run me of the program because the roots of these polynomials are found using a

Newton method, which may take a large number of itera ons to converge.

3.7 Object-Oriented Design

Figure 3.5 highlights themain class diagram of this implementa on, in par cular highligh ng

the structure rather than the specific syntax usage—wehave therefore omi ed arguments and

their types, as well as const-ness, as these don’t inform the structure of our code too much.

Note that we show inheritance with open triangle-headed arrows, one-to-one associa on

with closed triangle-headed arrows, and one-to-many associa on with open diamond-headed

arrows (in accordance with industry standards [1]). We denote private members with ’#’, pri-

vate members with ’-’, and public members with ’+’. These access a ributes give our code

some protec on to illegal usage, whereby a user may only interact with our classes with public

members. We also denote abstract methods with italics, and make a note of abstract classes

next to their class name.

To calculate a solu on to a problem, the user needs only to instan ate instances of Mesh and

Solution (with their relevant arguments), and all instances of other classes are created within

these if necessary.

During the crea on an instance of Mesh, they can either provide an Elements instance with

various Element s pre-populated, or they may simply provide a number of equally-spaced el-

ements they want in that Mesh. This Mesh can then be then be passed to the Solution con-

structor, with other problem details. To calculate a finite element solu on, the user may call

the Solution::Solve method, from which Solution::output_solution() may be called

to output the solu on to a data file. This data file can then be used to plot the values of the
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finite element solu on again the x-axis.

Solu on «abstract»
# noElements : int
# solu on : vector<double>
# mesh : Mesh*
# linear : bool
# compute_uh() : double
# get_higherOrderDoFs() : vector<double>
+ Solve() : void
+ compute_norm2() : double
+ compute_L2NormDifference2() : double
+ compute_H1NormDifference2() : double
+ compute_EnergyNorm2() : double
+ compute_energyNormDifference2() : double
+ compute_errorIndicator() : double
+ compute_errorIndicators() : vector<double>
+ compute_globalErrorIndicator() : double
+ compute_smoothnessIndicator() : double
+ compute_smoothnessIndicators() : vector<double>
+ get_linear() : bool
+ output_solu on() : void
+ output_mesh() : void

Solu on_linear
- f : f_double
- epsilon : double
- c : f_double
- a() : double
- l() : double
- compute_residual() : double
+ Solu on_linear()
+ Solu on_linear()
+ Solve() : void
+ compute_energyNormDifference2() : double
+ compute_errorIndicator() : double
+ get_f() : f_double
+ get_epsilon() : double
+ get_c() : f_double

Solu on_nonlinear
- f : f_double2
- f_ : f_double2
- epsilon : double
- a() : double
- l() : double
- compute_residual() : double
- compute_modifiedResidual() : double
+ Solu on_nonlinear()
+ Solu on_nonlinear()
+ Solve() : void
+ Solve_single() : void
+ compute_energyNormDifference2() : double
+ compute_errorIndicator() : double
+ compute_epsilonNorm() : double
+ get_f() : f_double2
+ get_epsilon() : double
+ get_f_() : f_double2

Mesh
- noElements : int
- noNodes : int
- dimProblem : int
- ownsElements : bool
+ elements : Elements*
+ Mesh()
+ Mesh()
+ get_dimProblem() : int
+ get_noElements() : int
+ get_noNodes() : int

Elements
- noElements : int
- elements : Element**
- nodeCoordinates : vector<double>
- startDoFs : vector<double>
+ Elements()
+ Elements()
+ get_noElements() : int
+ get_elementConnec vity() : vector<int>
+ get_elementDoFs() : vector<int>
+ get_nodeCoordinates() : vector<double>
+ get_rawNodeCoordinates() : vector<double>*
+ get_DoF() : int
+ get_polynomialDegrees() : vector<int>
+ calculateDoFs() : void

Element
- elementNo : int
- noNodes : int
- polynomialDegree : int
- nodeIndices : vector<int>
- nodeCoordinates : vector<double>*
- init_element() : void
+ Element()
+ Element()
+ mapLocalToGlobal() : double
+ get_Jacobian() : double
+ basisFunc on() : f_double
+ get_elementNo() : int
+ get_noNodes() : int
+ vector<double> get_nodeCoordinates()
+ vector<double>* get_rawNodeCoordinates()
+ vector<int> get_nodeIndices()
+ get_elementQuadrature() : void
+ get_polynomialDegree() : int
+ set_polynomialDegree() : void

Matrix «abstract»
[NO DATA]
# resize() : void
# item() : T
+ get_noRows() : int
+ get_noColumns() : int
+ get_diagonal() : vector<T>
+ set() : void

Matrix_full
# items : T
# noColumns : int
# noRows : int
# resize() : void
# get_index() : int
# item() : T
+ Matrix_full()
+ get_noRows() : int
+ get_noColumns() : int
+ set() : void

Figure 3.5: The rough object-oriented design of Blakey FEM.

Figure 3.6 outlines the structure of the namespaces used in this implementa on, which again

omit the arguments for simplicity. In general, the namespace names correlate to their purpose.

The common namespace holds some methods that are included in every implementa on

file; these methods are methods that need to be used frequently across different classes and

namespaces, so it made sense for them to be defined once in their own separate namespace.

Methods concernedwith refinement are defined in the refinement namespace. In general,
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onewouldmake a call to eitherrefinement::refinement()orrefinement::refinement_g(),

which respec vely describe refinement and global refinement. The choice of refinementmethod

at each step is chosen by the choice of flags in the arguments for these methods. The

refinement::refine_hp(), refinement::refine_h(), andrefinement::refine_p() re-

spec vely define individual steps of the hp-, h-, and p-adap ve refinement processes, and will

usually only be called from the former refinement processes. The namespace is structured such

that one of the individual refinement steps will take an old Solution and old Mesh, and give a

new, refined Solution and new, refined Mesh. More of the implementa on details for these

processes are given later in Algorithms 4.1–4.4.

The implementa ons of linearSystems and quadrature are discussed in Sec ons 3.4 and

3.6, respec vely.

common
+ addFunc on(f_double, f_double) : f_double
+ constantMul plyFunc on(double, f_double) : f_double
+ l2Norm(vector<double>, vector<double>) : double
+ mul plyFunc on(f_double, f_double) : f_double

linearSystems
+ thomasInvert() : vector<double>
+ conjugateGradient() : vector<double>
+ dotProduct() : double

quadrature
+ legendrePolynomial() : f_double
+ legendrePolynomialRoot() : double
+ legendrePolynomialRoots() : vector<double>
+ get_gaussLegendrePoint() : double
+ get_gaussLegendreWeight() : double

refinement
+ refinement_g() : void
+ refinement() : void
+ refine_hp() : void
+ refine_h() : void
+ refine_p() : void

Figure 3.6: The namespaces available in Blakey FEM.

We note here that the base class Solution and its descendants, Solution_linear and

Solution_nonlinear, are at the heart of the solving process of the finite element algorithms.

See Appendix A for a more detailed discussion of how these classes use the data to solve the

problems.

3.8 Simple Numerics

Now that we have an implementa on of a finite element solver, we may test it with a few

example problems and seewhat resultswehave. Let us first consider a boundary value problem
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on Ω = [0, 1], where we seek a solu on, u ∈ H1(Ω), such that

−0.001u′′ + u = 1,

where u(0) = u(1) = 0. This fits our model problem from Sec on 2.2.1 by se ng ϵ = 0.001,

f ≡ 1, and c ≡ 1.

We first solve some simple examples on this domain for equally-sized linear elements across

the en re domain, as shown in Figure 3.7.
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Figure 3.7: Plots for the example boundary layer problem for varying element sizes.

We see that, as the number of elements increases, the solu on visibly gets more accurate.

But there is more to this than that: we no ce that with 8 linear elements, there is an unde-

sirable overshoot in the approxima on near the boundaries, but the plateau in the centre of

the domain is already a good approxima on of the solu on. As we increase the number of

elements we use for the approxima on, we are increasing the elements across the plateau for
page 38



Sec on 3 FEM Algorithms in C++

seemingly no reason. It may be beneficial, for example, to only reduce the size of elements

in areas where the higher resolu on is needed. We will see in Sec on 4 that we can compute

indicators capable of telling us exactly where these regions are, and allow us to get a be er

approxima on with fewer elements.

We could instead increase the polynomial degree on elements, which could lead to some ex-

ponen al convergence rates [18]. We’ve plo ed quadra c and cubic elements for 4 and 8 ele-

ments in Figure 3.8. We note once again that the higher polynomial degrees across the plateau

(where the exact solu on is roughly constant) are mostly unnecessary, and be er approxima-

ons of the solu on mostly come from the higher polynomial degrees near the boundary.
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Figure 3.8: Plots for the example boundary layer problem for varying element sizes and varying polynomial de-
grees.

To try outmore simple examples, youmay visit https://fem.blakey.familywhere a sim-

ple version of Blakey FEM is running, allowing you to compute some of your own solu ons. In

par cular you can try 3 different pre-set examples in the bo om-le of the page: one that pro-
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duces the boundary layer solu on like above, one that produces a sinusoidal solu on, and one

that produces a quadra c solu on. By varying the number of elements we can see improve-

ments in the solu on or deteriora ons in the solu on. A small shortcut allows mixed-sized

element meshes by entering a nega ve number of elements to the input, which can show in-

teres ng local convergence proper es. This will give roughly twice as many elements to the

le -side of the domain as on the right-side. You may also visit the GitHub repository, given on

page 2, to compile and run the code yourself.
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A Posteriori Error Es ma on and Adap vity

A priori error bounds only go so far for giving us error es ma ons, as in real-world models

we’re unlikely to know the exact solu ons. In some situa ons we may be able to use op mal

solu ons [15], or use a priori error bounds on model paramters [4]. However, for real world

applica ons of finite element methods for solving PDEs, it may be that we cannot take reason-

able guesses at the solu on. A er all, why would we be solving for a solu on that we already

know?

In general for an a priori bound, we have a bound of the form

∥u− uh∥ ≤ E1(h, p, u),

where ∥·∥ denotes a suitable norm and the bound, E1, depends upon the element size, h,

the polynomial degree on that element, p, and — crucially — the actual solu on, u. It would

be far be er to derive computable error bounds that depend instead upon the finite element

approxima onof the solu on, uh, so thatwe can calculate the boundevenwhenwedon’t know

the exact solu on. We will introduce such bounds in this sec on, referred to as a posteriori

error bounds, which take the form

∥u− uh∥ ≤ E2(h, p, uh),

and therefore depend on our numerical approxima on, uh.
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4.1 A Posteriori Error Es ma on in 1D

When numerically solving real-life problems (such as computa onal fluid dynamics, elas c-

ity, or weather predic on problems) we may find that the overall accuracy of the numerical

approxima on is degraded by local singulari es; a remedy to this problem is to locally refine

around areas where the approximate and analy cal solu on differ the most [39]. When work-

ing with test problems (e.g. −u′′(x) = sin(x)) we know the analy cal solu on and can there-

fore immediately seewhere these areas are; however, inmost prac cal situa ons the analy cal

solu on is not known and we can’t do this.

For finite element methods, there exist a posteriori error es mates (error es mates without

knowing the analy cal solu on). We will derive such an error es mate for our model problem

in Equa on (2.4) in this sec on, mostly following the results from Schwab [32] as a guide.

We firstly define the energy norm, which is the norm in which we will measure our error and

error es mates.

Defini on 4.1 (Energy norm, [25, p. 55]).

The energy norm is defined as

∥u∥E := a(u, u),

where a is the usual bilinear func onal from our FEM.

In 1D, we may consider domain Ω := (a, b) and finite element space

Vh := {u ∈ H1(Ω) : u|(xi−1,xi) ∈ PPi
(xi−1, xi)∀i ∈ [1, N ]N}.

We ul mately want to prove that there exists an a posteriori bound on ∥u− uh∥E , but we first

need to prove some preliminary results.

Let Ω̂ := [−1, 1] be the one-dimensional reference element. Thenwe knowby [32, eq. 3.3.3]
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that, for any u ∈ L2(Ω̂), we may write u in the form of an expansion of Legendre polynomials:

u(ξ) =
∞∑
i=0

aiLi(ξ), (4.1)

where

ai =
2i+ 1

2

∫ 1

−1

u(ξ)Li(ξ) dξ,

and {Li}∞i=0 are the family of Legendre polynomials, as defined in Sec on 3.2. We note that

the Legendre polynomials sa sfy

∫ 1

−1

Li(ξ)Lj(ξ) dξ =
2

2i+ 1
δij, (4.2)

where δij denotes the Kronecker delta.

Wemay employ Equa on (4.2), no ng Equa on (4.1), to deduce the following Parseval iden-

ty, as stated in a similar form by Schwab [32, eq. 3.3.14]:

∥u∥2L2(Ω̂) =
∞∑
i=1

2

2i+ 1
|ai|2. (4.2*)

More generally, the following lemma holds.

Lemma 4.1 ([32, lem. 3.10]).

Given u ∈ Hk(Ω̂), k ≥ 0, defined by Equa on (4.1), then the following (generalised) Parseval

iden ty holds: ∫ 1

−1

|u(k)(ξ)|2(1− ξ2)k dξ =
∞∑
i=k

|ai|2
2

2i+ 1

(i+ k)!

(i− k)!
.

Proof. Firstly, we show that the following rela on holds:

∫ 1

−1

(1− ξ2)kL(k)
i (ξ)L

(k)
j (ξ) dξ =

2

2i+ 1

(i+ k)!

(i− k)!
δij. (4.3)

To prove Equa on (4.3) we first note that Legendre polynomials are a special case of the
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Jacobi polynomials

{Pi(ξ;α, β)}∞i=0

cf. [38, p. 58]. In par cular the Jacobi polynomials sa sfy the orthogonality property:

∫ 1

−1

(1− ξ)α(1 + ξ)βPi(ξ;α, β)Pj(ξ;α, β) dξ

=
2α+β+1

2i+ 1 + α + β

Γ(α + 1 + i)Γ(β + 1 + i)

Γ(i+ 1)Γ(α + β + 1 + i)
δij;α, β > −1,

(4.4)

where Γ(·) denotes the gamma func on.

Moreover, we note that

L
(k)
i (ξ) =

(i+ k)!

2ki!
Pi−k(ξ; k, k), k ≥ i. (4.5)

Hence, using both Equa on (4.4) and (4.5) gives

∫ 1

−1

(1− ξ2)kL(k)
i (ξ)L

(k)
j (ξ) dξ

=

∫ 1

−1

(1− ξ)(k)(1 + ξ)(k)
(i+ k)!

2ki!

(j + k)!

2kj!
Pi−k(ξ; k, k)Pj−k(ξ; k, k) dξ

=
[(i+ k)!]2

22k[i!]2
22k+1

2i+ 1

Γ(i+ 1)Γ(i+ 1)

Γ(i− k + 1)Γ(i+ k + 1)
δij

=
[(i+ k)!]2

22k[i!]2
22k+1

2i+ 1

i!

(i− k)!
i!

(i+ k)!
δij

=
2

2i+ 1

(i+ k)!

(i− k)!
δij,

hence, we deduce that Equa on (4.3) holds.
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To complete the proof of the lemma, we note that

∫ 1

−1

(1− ξ2)k|u(k)(ξ)|2 dξ

=

∫ 1

−1

(1− ξ2)k|
∞∑
i=1

aiL
(k)
i (ξ)|2 dξ

=
∞∑

i,j=k

aiaj

∫ 1

−1

(1− ξ2)kL(k)
i (ξ)L

(k)
j (ξ) dξ

=
∞∑
i=k

2

2i+ 1

(i+ k)!

(i− k)!
|ai|2,

where we have employed Equa on (4.3).

With these results, we now consider the construc on of a suitable projector πh : L2(Ω̂) →

PP (Ω̂), where PP (Ω̂) denotes the space of polynomials of degree less or equal to P , P ≥ 0.

To this end, we state the following result.

Lemma 4.2 ([32, eq. 3.3.14]).

For every u ∈ L2(Ω̂) we have that

inf
v∈PP (Ω̂)

∥u− v∥L2(Ω̂) =

[
∞∑

i=p+1

2

2i+ 1
|ai|2

] 1
2

.

Proof. Let v ∈ PP (Ω̂) be any polynomial of degree P , P ≥ 0, then

v(ξ) =
P∑
i=0

biLi(ξ)

for a given set of coefficients {bi}Pi=0. Then employing Equa on (4.2*) gives

∥u− v∥2L2(Ω̂) =
P∑
i=0

2

2i+ 1
|ai − bi|2 +

∞∑
i=P+1

2

2i+ 1
|ai|2.

Hence ∥u− v∥L2(Ω̂) will be minimised when bi = ai for i ∈ [1, P ]N, and we have our result.
page 45



FEM Algorithms in C++ Sec on 4

Remark 4.1.

As we would expect, the func on v ∈ PP (Ω̂), which minimises the norm ∥u− v∥L2(Ω̂) is in fact

the L2(Ω̂)-projec on of u onto PP (Ω̂).

Based on previous results, we may derive an approxima on result. However, we first, for

j ∈ [0, k]N, k ∈ N, define

V k
j (Ω̂) := {u ∈ L2(Ω̂) : |u|V k

j (Ω̂) <∞},

where

|u|2V k
j (Ω̂) ≡

k∑
i=j

∫ 1

−1

(1− ξ2)i|u(i)(ξ)|2 dξ,

akin to [32, eq. 3.3.10].

Note that for j = 0, | · |V k
j (Ω̂) is a norm, but only a semi-norm for j > 0.

Theorem 4.1 (Similar to [32, th. 3.11]).

Given u ∈ V k
0 (Ω̂), k ≥ 1, the following approxima on result holds

inf
v∈PP (Ω̂)∥u−v∥2

L2(Ω̂)

≤
[
(P + 1− s)!
(P + 1 + s)!

] 1
2

|u|2V s
s (Ω̂) ,

for s ∈ [0,min(P + 1, k)]N.

Proof. Employing Lemma 4.2 gives

inf
v∈PP (Ω̂)

∥u− v∥2L2(Ω̂) =
∞∑

i=P+1

2

2i+ 1
|ai|2

=
∞∑

i=P+1

2

2i+ 1
|ai|2

(i+ s)!

(i− s)!
(i− s)!
(i+ s)!

≤ (P + 1− s)!
(P + 1 + s)!

∞∑
i=P+1

2

2i+ 1

(i− s)!
(i+ s)!

=
(P + 1− s)!
(P + 1 + s)!

|u|2V s
s (Ω̂) ,
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by Lemma 4.1, as required.

For the purposes of the a posteriori error es ma on, we require an alterna ve approxima-

on result, which we will now develop in a similar way.

Theorem 4.2 ([32, th. 3.14]).

Given u ∈ H1(Ω̂) there exists πhu ∈ PP (Ω̂) such that the following hold:

πhu(±1) = u(±1), (4.6a)

∥u′ − (πhu)
′∥2L2(Ω̂) =

∞∑
i=P

2

2i+ 1
|bi|2, (4.6b)

∥u− πhu∥2L2(Ω̂) ≤
∫ 1

−1

(u− πhu)2

1− ξ2
dξ =

∞∑
i=P

2

i(i+ 1)(2i+ 1)
|bi|2. (4.6c)

Here, {bi}∞i=0 are the Legendre coefficients of u′, i.e.,

bi =
2i+ 1

2

∫ 1

−1

u′(ξ)Li(ξ) dξ, i ∈ N.

Proof. (4.6a) Firstly, we write (πhu)′ to be the truncated Legendre series expansion of u′, i.e.,

(πhu)
′ =

P−1∑
i=0

biLi(ξ),

and define

πhu(ξ) =

∫ ξ

−1

(πhu)
′(η) dη + u(−1).

Hence, by defini on of πhu(−1) = u(−1).
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Moreover,

πhu(1) =

∫ 1

−1

(πhu)
′(η) dη + u(−1)

= 2bi + u(−1)

= 2biπhu(−1)

Hence,

πhu(1)− πhu(−1) = 2b0.

Similarly,

u(1)− u(−1) =
∫ 1

−1

u′(ξ) dξ

=

∫ 1

−1

∞∑
i=0

biLi(ξ) dξ

= 2b0.

Thereby, given that πhu(−1) = u(−1), we deduce that πhu(1) = u(1), and hence Equa on

(4.6a) holds.

(4.6b) This follows immediately with Lemma 4.1.

(4.6c) First consider the following, where we have applied Equa on (4.6a):

u(ξ)− πhu(ξ) =
∫ ξ

−1

u′(η) dη −
∫ ξ

−1

(πhu)
′(η) dη

=

∫ ξ

−1

∞∑
i=P

biLi(η) dη

=
∞∑
i=P

biψi(ξ), (4.7)

where ψi(ξ) =
∫ ξ

−1
Li(η) dη, i ∈ [p,∞)N.
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We recall that the Legendre polynomials sa sfy the ODE problem:

((1− ξ2)L′
i(ξ))

′ + i(i+ 1)Li(ξ) = 0, in Ω̂,

for i ∈ N, by [38, th. 4.2.1].

Rearranging gives

Li = −
((1− ξ2)L′

i)
′

i(i+ 1)
, i ≥ 1,

and integra ng gives

ψ(ξ) ≡
∫ ξ

−1

Li(η) dη

= − 1

i(i+ 1)

∫ ξ

−1

((1− η2)L′
i(η))

′ dη

= − 1

i(i+ 1)
(1− ξ2)L′

i(ξ).

Hence,

∫ 1

−1

1

1− ξ2
ψi(ξ)ψj(ξ) dξ =

∫ 1

−1

1

i(i+ 1)

1

j(j + 1)
(1− ξ2)L′

i(ξ)L
′
j(ξ) dξ

=
1

[i(i+ 1)]2
2

2i+ 1

(i+ 1)!

(i− 1)!
δij

=
2

2i+ 1

1

i2(i+ 1)2
(i+ 1)i(i− 1)!

(i− 1)!
δij

=
2

i(i+ 1)(2i+ 1)
δij. (4.8)

Employing Equa ons (4.7) and (4.8) gives

∫ 1

−1

|u(ξ)− πhu(ξ)|2 dξ ≤
∫ 1

−1

1

1− ξ2
|u(ξ)− πhu(ξ)|2 dξ

=

∫ 1

−1

(
∞∑
i=P

biψi(ξ)

)2

dξ

=
∞∑
i=P

2

i(i+ 1)(2i+ 1)
|bi|2,
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as required.

From Theorem 4.6, we now derive the following approxima on result.

Corollary 4.1 ([32, co. 3.15]).

Let u ∈ H1(Ω̂) ∩ V k
0 (Ω̂), k ≥ 1. Then the following bound holds:

∥u′ − (πhu)
′∥L2(Ω̂) ≤

[
(p− s)!
(p+ s)!

] 1
2

|u′|V s
s (Ω̂) ,

where s ∈ [0,min(P, k)]N.

Proof. From Equa on (4.6b) from Theorem 4.2, together with the proof of Theorem 4.1, gives

∥u′ − (πhu)
′∥2L2(Ω̂) =

∞∑
i=P

2

2i+ 1
|bi|2

=
∞∑
i=P

2

2i+ 1

(i+ s)!

(i− s)!
(i− s)!
(i+ s)!

|bi|2

≤ (P − s)!
(P + s)!

∞∑
i=P

2

2i+ 1

(i+ s)!

(i− s)!
|bi|2

=
(P − s)!
(P + s)!

|u′|2V s
s (Ω̂) ,

as required.

For the purposes of the proceeding a posteriori error analysis we consider a par cular case

of Theorem 4.2, applied to an individual element, κi = [xi−1, xi], i ∈ [1, N ]N. To this end,

consider the following element mapping:

Fκi
:[−1, 1]→ [xi−1, xi];

Fκi
(ξ) ≡ x =

1

2
(1− ξ)xi−1 +

1

2
(1 + ξ)xi.

Note the slight change of nota on, where we can write

û(ξ) = u ◦ F (ξ).
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Wemay now introduce the following theorem as the linear approxima on result that wewill

use.

Theorem 4.3 (1D linear approxima on result, [32, p. 145]).

If u ∈ H1(κi), i ∈ [1, n]N, and πhu(xi) = u(xi) for i ∈ [0, n]N, then Πhu ∈ Vh s.t.

∫ xi

xi−1

w−1
i (u− πhu)2dx ≤

1

Pi(Pi + 1)
∥u′∥2L2(κi)

,

where wi = (xi − x)(x− xi−1).

Proof. From Equa on (4.6c) from Theorem 4.2, we have

∫ 1

−1

(û− πhû)2

1− ξ2
dξ =

∞∑
i=P

2

i(i+ 1)(2i+ 1)
|bi|2

=
∞∑
i=P

2

i(i+ 1)(2i+ 1)

(i− s)!
(i− s)!

(i+ s)!

(i+ s)!
|bi|2

≤ (P − s)!
(P + s)!

1

P (P + 1)

∞∑
i=P

2

2i+ 1

(i+ s)!

(i− s)!
|bi|2.

Employing Lemma 4.1 gives

∫ 1

−1

(û− πhû)2

1− ξ2
dξ ≤ (P − s)!

(P + s)!

1

P (P + 1)

∫ 1

−1

|û(s+1)|2(1− ξ2)s dξ.

In order to scale from the reference element on Ω̂ to κi (on [xi−1, xi]), we first note that

dx
dξ

=
1

2
(xi − xi−1)

and hence
1

1− ξ2

(
dx
dξ

)−2

=
1

wi

.

To see this, we note that

ξ =
2x− (xi + xi−1)

xi − xi−1
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and therefore

1− ξ2 = 1− (2x− (xi + xi−1))
2

(xi − xi−1)2

=
(xi − xi−1)

2 − (2x− (xi + xi−1))
2

(xi − xi−1)2

=
4(xi − x)(x− xi−1)

(xi − xi−1)2
.

We may now set s = 0, which gives

∫ xi

xi−1

w−1
i (u− πhu)2 dx =

∫ 1

−1

(û− πhû)2w−1
i

dx
dξ

dξ

=

∫ 1

−1

1

1− ξ2
(û− πhû)2

[
dx
dξ

]−1

dξ

≤ 1

P (P + 1)

[
dx
dξ

]−1 ∫ 1

−1

(û′)2 dξ.

Now

u′ ≡ ux

= ûξ

[
dx
dξ

]−1

≡ û′
[
dx
dξ

]−1

.

Thus,

∫ xi

xi−1

w−1
i (u− πhu)2 dx ≤

1

P (P + 1)

[
dx
dξ

]−1 ∫ xi

xi−1

(u′)2
[
dx
dξ

]2 dξ
dx

dx

=
1

P (P + 1)
∥u′∥2L2(xi−1,xi)

,

and no ng κi = [xi−1, xi] we are done.
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For the following theorem’s proof we also make note of the Galerkin orthogonality property,

as stated in [25][eq. 1.35].

a(u− uh, vh) = 0,∀vh ∈ Vh. (4.9)

We also make the following defini on of the residual.

Defini on 4.2 (Residual).

For one-dimensional version of themodel problemgiven in Equa on (2.4), we have the residual:

R(u)|(xi−1,xi)
:= f + ϵu′′ − cu, i ∈ [1, n]N.

We will now state and prove the main theorem providing an a posteriori error bound.

Theorem 4.4 (1D a posteriori error bound).

If u ∈ H1(Ω) and u sa sfies Equa on (2.4), then

∥u− uh∥E ≤

√√√√ N∑
i=1

1

Pi(Pi + 1)

1

ϵ

∥∥∥w1/2
i R(uh)

∥∥∥2
L2(xi−1,xi)

,

where ∥·∥E denotes the energy norm, Pi is the element’s polynomial degree,wi is defined as

in Theorem 4.3, and uh is our approxima on of the solu on defined in Equa on (2.6).

Proof. We note that Equa on (2.4) tells us that

−ϵu′′(x) + c(x)u(x) = f(x), x ∈ (0, 1)

with u(0) = u(1) = 0.
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The problem’s weak formula on is, as wri en in Equa on (5.2), find u ∈ H1
0 (0, 1) s.t.

a(u, v) = l(v), ∀v ∈ H1
0 (0, 1),

Projec ng our problem to the finite-dimensional space, as shown in Equa on (2.6), we have

to find uh ∈ Vh s.t.

a(uh, vh) = l(vh)∀vh ∈ Vh.

By working from the defini on of the energy norm, we get:

∥u− uh∥2E = a(u− uh, u− uh).

By defining e := u − uh and using Galerkin orthogonality (Equa on (4.9)) in the second

argument, we get

∥u− uh∥2E = a(u− uh, e)

= a(u− uh, e− πhe).

By linearity we may split up the terms in the first argument to give

∥u− uh∥2E = a(u, e− πhe)− a(uh, e− πhe).

We now subs tute the model equa on (Equa on (2.4)) into the first term to give
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∥u− uh∥2E = l(e− πhe)− a(uh, e− πhe)

=

∫ 1

0

[f(e− πhe)− ϵu′h(e− πhe)′ − cuh(e− πhe)] dx.

Applying integra on by parts elementwise and no ng the vanishing boundary condi ons by

Theorem 4.3 gives

∥u− uh∥2E =
N∑
i=1

∫ xi

xi−1

[f(e− πhe) + ϵu′′h(e− πhe)− cuh(e− πhe) dξ]

=
N∑
i=1

∫ xi

xi−1

(f + ϵu′′h − cuh)(e− πhe) dξ.

By using the defini on of the residual in Equa on (4.2), we have

∥u− uh∥2E =
N∑
i=1

∫ xi

xi−1

(R(uh))(e− πhe)dx

=
N∑
i=1

∫ xi

xi−1

w
1/2
i (R(uh))w

−1/2
i (e− πhe)dx,

where wi := (xi − x)(x− xi−1).

Using the Cauchy-Schwarz inequality gives
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∥u− uh∥2E ≤
N∑
i=1

√∫ xi

xi−1

wi(R(uh))2dx

√∫ xi

xi−1

w−1
i (e− πhe)2dx

=
N∑
i=1

∥∥∥w1/2
i R(uh)

∥∥∥
L2
(xi−1,xi)

√∫ xi

xi−1

w−1
i (e− πhe)2dx.

Applying our error bound in Theorem 4.3 we have

∥u− uh∥2E ≤
N∑
i=1

∥∥∥w1/2
i R(uh)

∥∥∥
L2
(xi−1,xi)

√
1

Pi(Pi + 1)
∥e′∥2L2(xi−1,xi)

=
N∑
i=1

∥∥∥w1/2
i R(uh)

∥∥∥
L2
(xi−1,xi)

√
1

ϵPi(Pi + 1)
∥ϵ1/2e′∥2L2(xi−1,xi)

=
N∑
i=1

∥∥∥w1/2
i R(uh)

∥∥∥
L2
(xi−1,xi)

∥∥ϵ1/2e′∥∥
L2(xi−1,xi)

√
1

ϵPi(Pi + 1)
.

Applying the Cauchy-Schwarz inequality, we have

∥u− uh∥2E ≤

√√√√ N∑
i=1

∥ϵ1/2e′∥2L2
(xi−1,xi)

√√√√ N∑
i=1

1

ϵpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥2
L2
(xi−1,xi)

.

=
∥∥ϵ1/2e′∥∥

L2(0,1)

√√√√ N∑
i=1

1

ϵpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥2
L2
(xi−1,xi)

.

No cing that ∥e∥2E ≡
∥∥ϵ1/2e′∥∥2

L2(0,1)
+
∥∥c1/2e∥∥2

L2(0,1)
≥
∥∥ϵ1/2e′∥∥2

L2(0,1)
, we have
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∥u− uh∥2E ≤ ∥e∥E

√√√√ N∑
i=1

1

ϵpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥2
L2
(xi−1,xi)

= ∥u− uh∥E

√√√√ N∑
i=1

1

ϵpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥2
L2
(xi−1,xi)

By dividing through by the norm of the error in the energy norm, we further simplify to

∥u− uh∥E ≤

√√√√ N∑
i=1

1

ϵpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥2
L2
(xi−1,xi)

,

which gives the desired result.

Since each term in the sum is dependant only on the proper es of a single element, say κi,

we also make the further defini on of

ηκi
:=

1√
ϵpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥
L2
(xi−1,xi)

as the element or local error indicator so that we can further write

∥u− uh∥E ≤

√√√√ N∑
i=1

η2κi
.
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We will then write this upper bound as

E(uh, h, p) :=

√√√√ N∑
i=1

η2κi

which will be referred to as the global error indicator.

4.2 Example Problems

We introduce here some model problems that will be used for numerical experiments with

the h-, p-, and hp-adap ve algorithms in Sec ons 4.3–4.5.

Problem 4.1.

A sinusoidal example, for which the solu on the solu on is very smooth. The problem has the

exact solu on

u(x) = sin(2πx).

The data is set on Equa on (2.4a) as ϵ = 1, f = 4π2 sin(2πx), and c ≡ 0.

Problem 4.2.

A boundary layer problem, exhibi ng boundaries near x = 0 and x = 1, as given in [42, ex. 2]

with the exact solu on

u(x) = − exp(x/
√
ϵ)

exp(1/
√
ϵ) + 1

− exp(−x/
√
ϵ) exp(1/

√
ϵ)

exp(1/
√
ϵ) + 1

+ 1.

The data is set on Equa on (2.4a) as ϵ = 10−3, f ≡ 1, and c ≡ 1.

Problem 4.3.

A problem exhibi ng a shock, as given in [42, ex. 4] with the exact solu on

u(x) = arctan(100(x− 1/3)) + (1− x) arctan(100/3)− x arctan(200/3).
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The data is set on Equa on (2.4a) as ϵ = 1, f = 4×106(x−1/3)
(105(x−1/3)2+1)2

, and c ≡ 1. Again, we note

that f is just−u′′ + u.

4.3 h-adap vity

This sec on will be dedicated to looking at strategies to adap vely change the mesh locally

in order to reduce the energy norm error of the solu on.

We need an algorithm that will instruct us on howwewill construct successivemeshes, each

more refined than the previous. We will use a modified version of the algorithm described in

[39, p .68] by Verfürth, which is given in Algorithm 4.1; this algorithm has τ kh as the kth mesh,

ukh as the finite element solu on on τ kh , and ηκ as the individual element indicators and E as

the global error indicator, c.f. the end of Sec on 4.1. The underline on the word ”refine” is

because we need to do something further — how do we deem elements as big contributors to

the global error, and then how do we construct the subsequent refinement to the mesh and

solu on?

Algorithm 4.1: Refinement
Create ini al mesh, τ 0h ;
Compute ini al solu on, u0h;
Compute all ηκ and E ;
k ← 0;
while E ≥ TOL do

Refine mesh and solu on, giving τ k+1
h and uk+1

h ;
Solve ukh on τ kh ;
Compute all ηκ and E ;
k ← k + 1

For h-refinement, as described in [5, p. 748] and [41, p. 772], our aim is to make the error

uniform across all elements. By the strategy outlined in [23, p. 18] we will choose to refine all

those elements with local error indicators that are greater or equal to one third of the largest

local error indicator. Algorithm 4.2 outlines how we have implemented this, where the algo-

rithm takes the current mesh, current solu on, and error indicators for all elements as inputs;

and then returns a refined mesh and solu on.
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Algorithm 4.2: h-refinement
Input : τh, uh,ηκ

Output: τ newh , unewh

forall κ do
if ηκ ≥ maxηκ/3 then

Split element in half and add both these elements to τ newh

else
Copy element from τh to τ newh

4.3.1 Test Problem 1

For Problem 4.1, we may apply the above algorithms adap vely refine the mesh to provide

more accurate solu ons.

By ini alising τ0 to have 4 linear elements, and allowing the algorithm to run, we get the

results shown in Figure 4.1 for the first 3 h-adap ve steps.
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Figure 4.1: h-adap vity on Problem 4.1.
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We see that the ini al mesh with four linear elements is not very good at approxima ng

the exact solu on (and in fact ∥u− uh∥E ≈ 1.93 here). The first step of the refinement algo-

rithm automa callymarks all elements for refinement, resul ng in ameshwith eight elements,

which is again a be er approxima on of the exact solu on. Figure 4.2 shows both the energy

norm between the exact and approximate solu ons (∥u− uh∥E) as well as the error indicator

(E(uh, h, p)) against the degrees of freedom for the first 15 h-refinement steps. We can see

that the error is reducing at some polynomial rate— and is importantly staying under the error

es mator, since it is an upper bound.

101 102 103

DoF

10 2

10 1

100

er
ro

r

Test Problem 1 h-Adaptive Error

Energy error
Error estimator

Figure 4.2: h-adap vity convergence rates on Problem 4.1.

This means that refinement is working at reducing the error, but how does the efficiency of

this compare to global refinement? We can see in Figure 4.3 that the h-adap ve version, as

well as taking more steps, performs very slightly be er. It may seem at this point that there

is no real advantage to h-adap vity, but we will see in Sec on 4.4 that this par cular problem

performs significantly be er with p-adap vity.
page 61



FEM Algorithms in C++ Sec on 4
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Figure 4.3: h-adap vity (local refinement) and global h-refinement convergence rates on Problem 4.1.

We note that for this problem we can calculate the efficiency indices of our error bounds

with

Θ =
E(uh, h, p)
∥u− uh∥E

,

which gives us an indica on of how close our error es mate is compared to the actual error

in the solu on. Note that we can only calculate this quan ty here because we know the exact

solu on. The first ten steps of theh-adap ve algorithmproduce the results in Table 4.1. We see

that the error es mator is ini ally about 4% inefficient for the ini al condi on of 4 elements,

but this decreases down to 0.1% inefficiency by the me that the algorithm has split the mesh

into 280 elements. Thismeans that our bound for this problem is very ght andwe aren’t doing

too many unnecessary refinements.
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N Θ
4 1.042
8 1.010
12 1.024
24 1.006
36 1.007
52 1.001
88 1.002
108 1.002
196 1.001
280 1.001

Table 4.1

4.3.2 Test Problem 2

Recall that Problem 4.2 is a boundary layer problem, exhibi ng boundaries near x = 0 and

x = 1, with the exact solu on

u(x) = − exp(x/
√
ϵ)

exp(1/
√
ϵ) + 1

− exp(−x/
√
ϵ) exp(1/

√
ϵ)

exp(1/
√
ϵ) + 1

+ 1,

where ϵ = 10−3.

We ini alise the h-adap ve algorithm with a mesh of 4 linear elements, and get the results

in Figure 4.4 a er 3 h-adap ve steps.

We see that the ini al mesh is very bad at approxima ng the solu on: the approximate

solu on does not capture the plateau through the centre of the domain, it does not capture

the sharp deriva ve near the boundaries, and there is an erroneous overshoot in the solu on’s

maximum value. However, by 2 and 3 refinement steps we see the features of the true solu on

becoming apparent in the approximate solu on.

We no ce that, unlike Problem 4.1, that the h-adap ve algorithm produces very different

results to global refinement. Figure 4.5 shows, for the same ini al condi on, global refinement

having a much higher error for the same number of degrees of freedom. Interes ngly, we see

some very high convergence rates for local refinement when the algorithm is star ng. This is
page 63



FEM Algorithms in C++ Sec on 4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
Test Problem 2 with 0 h-Adaptive Step

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Test Problem 2 with 1 h-Adaptive Step

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Test Problem 2 with 2 h-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Test Problem 2 with 3 h-Adaptive Steps

Approximation
Exact

Figure 4.4: h-adap vity on Problem 4.2.

likely to be because this is the stage at which the boundaries are resolved in the approxima on,

and we therefore get much closer to the solu on. When solving these numerical experiments,

the genera on of the global refinement data used significantly more computa onal resources

on my computer than the local adap vity data, and this is directly due to the larger number

of degrees of freedom. We note that there were roughly four mes the number of degrees of

freedom involved in reducing the error in the global refinement to roughly the same amount

of error in the local adap vity.

We may plot the mesh from the h-adap vity for the first 14 refinement steps to give us an

idea of how the elements have been marked for refinement, given in Figure 4.6. As one may

expect, with having errors ini ally high near the boundary, the mesh has been mostly refined

near the boundaries.

Also note that we could have performed similar analysis to those above without the exact
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Figure 4.5: h-adap vity (local refinement) and global h-refinement convergence rates on Problem 4.2.

solu ons to the equa ons; however it is s ll very useful to have this for these test problems,

as we can make further comparisons between the actual error and the es mate error.

4.3.3 Test Problem 3

Recall that Problem 4.3 is a problem exhibi ng a shock with the exact solu on

u(x) = arctan(100(x− 1/3)) + (1− x) arctan(100/3)− x arctan(200/3).

As a change to the previous examples, we set the ini al mesh for this problem to have 6

linear elements; this is because 4 elements don’t yield desirable results for some of the adap-

vity algorithms due to a lack of resolu on over the shock. The first 3 steps of the h-adap ve
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Figure 4.6: Resul ng h-adap vity mesh for Problem 4.2.

algorithm are shown in Figure 4.7.

The ini al mesh produces a solu on that roughly describes the true solu on near the bound-

aries, but doesn’t do a very good job at approxima ng the true solu on in the middle of the

domain. Adding to this observa on, we see that the deriva ve across the shock points becomes

steeper between adap ve steps, un l the steepness is roughly met by the third step. By this

third step we have most of the features that we would expect to see in a good approxima on

of the solu on.

As shown in Figure 4.8 we very clearly see that the mesh has righ ully been refined around

the shock region, allowing the solu on to become much more accurate. Because the mesh

is so fine, our plot does not really show how fine the mesh goes at its finest, but we see the

important feature that the element sizes are certainly smaller in this region.
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Figure 4.7: h-adap vity on Problem 4.3.

4.4 p-adap vity

Here, just like with h-adap vity, we again choose to mark elements for refinement for those

elements that have local error indicators greater or equal to one third of the largest local error

indicator. However we now refine elements by increasing the polynomial on elements marked

for refinement, rather than spli ng them into two new elements. This procedure is outlined

in Algorithm 4.3.

Algorithm 4.3: p-refinement
Input : τh, uh,ηκ

Output: τ newh , unewh

forall κ do
if ηκ ≥ maxηκ/3 then

Increase polynomial degree on element;

This is somewhat of an easier algorithm to implement computa onally as the number of
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Figure 4.8: Resul ng h-adap vity mesh for Problem 4.3.

elements between subsequent itera ons remains the same.

We note that, as described in [18], we can get exponen ally converging solu ons for solu-

ons that are very smooth (solu ons lie in Cp for some large p). This is very good news for our

convergence rates: this means that, for sufficiently smooth func ons, we will converge to the

solu on extremely quickly. This idea will be further developed in Sec on 4.5, where we will

combine this extraordinarily useful feature with mesh refinement.

4.4.1 Test Problem 1

For Problem 4.1 we again choose an ini al mesh with 4 linear elements.

Immediately we can see in Figure 4.9 that the solu on, a er one p-adap ve step, is very

close to the exact solu on. As we will see in Sec on 4.5 this makes sense with the smoothness
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Figure 4.9: p-adap vity on Problem 4.1.

of the solu on to this problem.

We can study the convergence rates for this problem under p-adap vity, as can be seen

in Figure 4.10. As discussed for a similar smooth problem in [17, p. 15] we see exponen al

convergence rates here. In fact, with the slight concavity we’re actually seeing some super-

exponen al convergence rates here.

One thing that we do no ce about Figure 4.10 that may be slightly concerning is the point

where the error in the energy norm is higher than the error es mate at 25 degrees of freedom.

We’ve calculated an upper bound to the error, so the bound should never be higher than the

error. However, wemust remember that these calcula ons havebeen computedon a computer

with finite precision, and so this situa onmay have happened due tomachine precision. In fact,

we may plot the error and es mator values for a few more itera ons of p-refinement in Figure

4.11 to see that the error actually increases with increasing degrees of freedom; this is further

evidence to suggest that we may be having issues with machine precision.

We note that the p-adap ve process has actually given us the same as global p refinement,

meaning that the error es mator must have been roughly equally distributed. We can see,

though, that this was probably the right thing to do! Figure 4.12 shows the convergence rates

for both the h- and p-adap ve algorithms, and shows that p-adap vity is far superior in reduc-
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Figure 4.10: p-adap vity convergence rates on Problem 4.1.

ing the error than h-adap vity for this problem.

Our efficiency indices (defined in Sec on 4.3) here begin withΘ0 = 1.042, and then by third

itera on reduce to Θ3 = 1.002; this means, just as what we saw with h-adap vity, the error

bound on this problem is very efficient.

4.4.2 Test Problem 2

For p-adap vity for Problem 4.2, we choose an ini al mesh of 4 linear elements, and produce

Figure 4.13 a er 3 p-adap ve steps.

We see that the results here look a li le strange to begin with: there are various oscilla ons

that appear across the transi on between the boundary layers and the plateau in the centre

of the domain. However these oscilla ons eventually disappear once we introduce enough
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Figure 4.11: p-adap vity convergence issues on Problem 4.1.

degrees of freedom, as shown in the convergence rate in Figure 4.14. Interes ngly, the error

indicator does not perform as efficiently as it did for the h-adap ve algorithm, with an effi-

ciency index of Θ = 1.401 at the eighth adap ve step. This isn’t a huge problem since the

indicator remains above the actual error, but it shows that the error indicator may not perform

as efficiently in some problems.

Comparing h- and p-adap vity for this problem, Figure 4.15 shows us that p-adap vity is

be er for this test problem, with its far superior convergence rate.

4.4.3 Test Problem 3

For p-adap vity of Problem 4.3, we (like in Sec on 4.3) start with an ini al mesh of 6 linear
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Figure 4.12: h- and p-adap vity convergence on Problem 4.1.

elements. The results for the first 3 steps of p-adap vity are shown in Figure 4.16.

We no ce that a er the first p-adap ve step, there is a clear overshoot of the solu on’s

value, likely to be caused by the steep deriva ve needed over the shock. As we take more

steps we see these oscilla ons both spread out and become smaller in amplitude as the poly-

nomial degrees in that region are increased. Figure 4.17 shows the polynomial degrees across

the mesh a er the third p-adap ve step, and shows that the polynomial degree on the two

elements closest to the shock have been increased to 4; the polynomial degree has been le

unchanged as 1 elsewhere on the domain.

4.5 hp-adap vity

Here we will combine the strategies of the above by making local refinements to both the

mesh and the polynomial degrees in a suitable combina on. We will s ll mark elements that
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Figure 4.13: p-adap vity on Problem 4.2. Note that for plo ng purposes we take 10 sample points per element,
which leads to plots 3 and 4 looking not as smooth as they should; be assured that the actual solu on described
there are cubic and quar c, respec vely.

we will refine in the same way as before, but we now have a choice as to whether we h- or

p-refine.

As discussed in Sec on 4.4, we can see exponen al convergence rates for solu ons that are

sufficiently smooth, and we have seen in Sec on 4.3 that we can achieve polynomial conver-

gence rates. If p-adap vity has higher convergence rates then why do we need to combine the

two in the first place?

If the refinement of the mesh is not strong enough, then the exponen al part of error re-

duc on (appearing from p-adap on) cannot appear [18, p. 604]. We therefore may need to

refine the mesh before increasing the polynomial degree, and we ought to make this decision

depending upon how ’smooth’ the solu on is; to detect whether the solu on is ’smooth’, we

introduce a so-called smoothness indicator as done in [42, p. 2733] (which is rewri en in more
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Figure 4.14: p-adap vity convergence on Problem 4.2.

familiar nota on Equa on (4.10)) for u ∈ H1(K), whereK ⊆ Ω is the part of domain denoted

by a single element, κ.

FK [u] :=


∥u∥2∞(K)

[
coth(1)

(
h−1
K ∥u∥

2
L2(K) + hK |u|2H1(K)

)]−1

if u ̸≡ 0

1 if u ≡ 0

(4.10)

Combining algorithms 4.2 and 4.3with our smoothness indicatorwe get Algorithm4.4, which

is effec vely the same as [42, algorithm 2] (by taking τ = 0.5).
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Figure 4.15: h- and p-adap vity convergence on Problem 4.2.

4.5.1 Test Problem 1

For Problem 4.1, we again start with 4 linear elements as an ini al mesh. Running the hp-

adap ve algorithm for the first 3 steps gives Figure 4.18.

We no ce that approxima on converges very quickly to the true solu on, even a er just a

few hp-adap ve steps. This is shown especially well in Figure 4.19, which shows the conver-

gence rate of the hp-algorithm a er 8 hp-adap ve steps, and very clearly shows exponen al

convergence rates.

We may also produce a graph showing the sizes and polynomial degrees for each element

a er 8 hp-adap ve steps, which is shown in Figure 4.20. This shows that the algorithm, from

the ini al condi on, chose to double the number of elements (we now have 8 elements) and

increase the polynomial degrees to order 5. This is a very sensible resul ng mesh as the true
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Figure 4.16: p-adap vity on Problem 4.3.

solu on is very smooth, upon which we expect higher-order polynomials to approximate the

solu on be er.

4.5.2 Test Problem 2

Problem 4.2 has a smooth solu on, but there needs to be sufficient resolu on around the

boundaries before a viable solu on becomes apparent. The hp-adap ve algorithm produces

the results in Figure 4.21 for the first 3 hp-adap ve steps.

Wihler [42] approximates a similar problem to Problem4.2 (where ϵ = 10−5), and produces a

plot of the convergence rates and mesh. We produce our version of these results respec vely

in Figures 4.22 and 4.23, plo ng both the results to Problem 4.2 and the modified problem
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Figure 4.17: h- and p-adap vity convergence issues on Problem 4.2.

given in [42, ex. 2].

First of all, we see that the hp-adap ve strategy for Problem 4.2 yields exponen al conver-

gence rates, resul ng from the use of p-adap vity. We no ce that there are some mes lapses

in the efficiency of the error es mator, but it otherwise sits efficiently just above the actual

error. However there is a problem for when the graph goes beyond 70 degrees of freedom

where the energy error is higher than the error indicator; this is likely due to similar reasons as

discussed in Sec on 4.4 when the convergence graph had a similar problem. In fact, by running

Blakey FEMwith the correct parameters for this problem, we see that the individual error indi-

cators on each element are in the order of 1× 10−15, which is in the order ofmachine precision

in this C++ implementa on. Therefore the likely cause for this is not a fault in themathema cal

analysis, but more likely a rounding error.

The mesh shown for Problem 4.2 also shows reasonable results: the elements are smaller
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Algorithm 4.4: p-refinement
Input : τh, uh,ηκ

Output: τ newh , unewh

forall κ do
if ηκ ≥ maxηκ/3 then

if FK ≥ 0.5 then
Increase polynomial degree on element;

else
Split element in half and add both these elements to τ newh

in size near the boundaries. However it is interes ng that the polynomial degree is so high

over the plateau region. More inves ga on would need to take place to determine why this

happened, as one would expect large linear elements would be sufficient for this problem.

We may also compare our results with Wihler’s results for the modified problem to Prob-

lem 4.2 where ϵ = 10−5. We no ce that there are some very similar features between the

two convergence rates: in par cular we see that there is a large gap between the error and

the es mator while the degrees of freedom are below 10, but this gap closes as the degrees of

freedom increase. We also no ce that both convergence graphs yield exponen al convergence

rates towards the true solu on. However, Wihler’s results appear to indicate that the solu on

was found within an accuracy of 1× 10−7 with 78 degrees of freedom — but our algorithm

takes around 83 degrees of freedom to achieve this, despite using the same smoothness indi-

cators, error indicators, and problem parameters. There is likely to be some small discrepancy

in the specific numerics of each implementa on, but we can be can be reassured by the results

having the same qualita ve behaviour.

Comparing the meshes between our results andWihler’s results show roughly the same be-

haviour — in that larger elements with lower-order polynomials appear in the centre of the

domain, and smaller elements with higher-order polynomials appear at the boundaries. How-

ever the polynomial degrees in outer boundary elements do not match between our results

and Wihler’s. This could be an issue in how the boundary condi ons have been applied, and

could also explain the slightly higher degrees of freedom needed to reduce the error in our

results.
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Figure 4.18: hp-adap vity on Problem 4.1.

We can, however, be sa sfied that our results do yield exponen al convergence rates to-

wards the exact solu on for both of these varia ons on Problem 4.2.

4.5.3 Test Problem 3

Problem 4.3 is designed to solve the same problem as [42, ex. 4], sowe canmake some direct

comparisons between our results and the results of Wihler. Figure 4.24 shows the hp-adap ve

algorithm for the first 3 steps, and Figures 4.25 and 4.26 respec vely show the convergence

rate and resul ng mesh a er 20 steps. For these plots we have chosen an ini al mesh of 6

linear elements.

Figure 4.24 clearly shows that hp-adap vity is helping the approxima on approach the solu-

on step-by-step, and Figure 4.25 shows that the solu on is converging exponen ally. Compar-

ing the convergence plot with Wihler’s plot in [42, fig. 5], we first note that our ini al meshes
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Figure 4.19: hp-adap vity convergence on Problem 4.1.

are different: ours consists of 6 linear elements, and Wihler’s consists of 4 linear elements.

Despite this, the convergence rates have roughly the same features. We actually no ce that

at around 100 degrees of freedom, our error is calculated at just under 1× 10−4 and Wihler’s

error is calculated at somewhere between 1× 10−3 and 1× 10−4. This actually shows that our

solu on has a smaller error for fewer degrees of freedom thanWihler’s but, just like in Sec on

4.5, this could be due to numerical errors or specific implementa on features. It could also be

due to the difference in ini al condi on.

The mesh shown in Figure 4.26 is very similar to the mesh shown in [42, fig. 5]: larger ele-

ments of degrees 4–7 appear near the boundaries, and smaller elements appear around the

shock region with high polynomial degrees around the point and low polynomial degrees in

the centre of the shock region.
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Figure 4.20: hp-adap vity element sizes and polynomial degrees on Problem 4.1.

4.6 Results Summary

Table 4.2 illustrates the performance and effec veness of each algorithm on each of the

different problems. We note here that the h (global) and h entries for Problem 3 are accurate

to only 1× 10−2 but were terminated early because of a high number of degrees of freedom,

and are indicated by the braces (); the entries for the same problem for p (global) and p are

accurate to only 1× 10−1 for similar reasons, and are indicated with curly braces {}.

Problem h (global) h p (global) p hp
4.1 11 [8193] 14 [1677] 4 [21] 4 [21] 6 [33]
4.2 9 [2049] 13 [397] 6 [29] 4 [17] 7 [27]
4.3 (13 [32769]) (19 [2131]) {14 [91]} {14 [35]} 10 [64]

Table 4.2: For each problem, shows the number of itera ons [and degrees of freedom in brackets] for each algo-
rithm to take the approxima on within 1× 10−3 of the exact solu on in the energy norm, with the excep on of
those in braces and curly braces.
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Figure 4.21: hp-adap vity on Problem 4.2.

For each of the test problems, we can see thath-adap vity certainly has at least some advan-

tage over global h-refinement (illustrated by Figures 4.3, 4.5, and 4.8). We can see, therefore,

that our error indicators are func oning as we’d like and that they are suitable for adap ve al-

gorithms. In par cular, Problem 4.2 had achieved a much lower error in the energy norm with

fewer degrees of freedom due to the algorithm only refining the mesh near the boundaries,

and not in the centre of the domain where it is not needed.

We no ce similar results for p-adap vity, where the adap vity has had at least some sort

of advantage, as shown in Figures 4.10, 4.14, and 4.17. In par cular, Problem 4.1 benefited

hugely from using p-adap vity.

For hp-adap vity, we see (with the excep on of Problem 4.1) an advantage of using hp-

adap vity over exclusive h or p global refinement. In fact, for Problem 4.3, the degrees of

freedom for a lower error were reduced by a factor of roughly 500, which shows the power of
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Figure 4.22: hp-adap vity convergence on Problem 4.2 (le ) and Wihler’s problem (right).
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Figure 4.23: hp-adap vity element sizes andpolynomial degrees onProblem4.2 (le ) andWihler’s problem (right).

hp-adap ve algorithms.

The avid reader may no ce that these three examples were chosen specifically to highlight

the types of solu ons that may benefit from the different adap vity techniques. In par cu-

lar, we no ce that Problem 4.1 performed par cularly well with p-adap vity (likely due to the

high smoothness), Problem 4.2 performed par cularly well with h-adap vity (likely due to the

boundaries), and Problem 4.3 performed par cularly well with hp-adap vity (likely due to a

mixture of the small shock region and the solu on’s overall smoothness).

page 83



FEM Algorithms in C++ Sec on 4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

1.0

1.5

2.0

u

Test Problem 3 with 0 hp-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

Test Problem 3 with 1 hp-Adaptive Step

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

u

Test Problem 3 with 2 hp-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

1.0

1.5

u

Test Problem 3 with 3 hp-Adaptive Steps

Approximation
Exact

Figure 4.24: hp-adap vity on Problem 4.3.
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Figure 4.25: hp-adap vity element sizes and polynomial degrees on Problem 4.3.
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Figure 4.26: hp-adap vity element sizes and polynomial degrees on Problem 4.3.
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Nonlinear Problems

The problem given in Sec on 2.2.1 is very clearly a linear differen al equa on; we can also

consider a different model problem that is nonlinear, as given in Equa on (5.1), and follow a

similar procedure as before to derive the weak formula on of this problem. Similarly to the

previous problem, for a given bounded Lipschitz domain Ω ⊆ Rd, d ≥ 1, we seek u such that

−ϵ∆u = f(x, u(x)), x ∈ Ω (5.1a)

u = 0, on ∂Ω (5.1b)

Here, ϵ > 0 and f : Ω× R→ R is con nuously differen able.

For this problem we will seek u in the func on spaceH1
0 (Ω) =: V .

Mul plying Equa on (5.1a) by a test func on, v ∈ H1
0 (Ω) to give

−ϵ∆uv = fv, ∀v ∈ H1
0 (Ω).

Integra ng over the domain and performing integra on by parts as done previously we need

to find u ∈ H1
0 (Ω) such that

ϵ(∇u,∇v) = (f(u), v), ∀v ∈ H1
0 (Ω), (5.2)
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where we have suppressed the dependence of x in f for simplicity. No ce that this problem

is almost the same as the problem given in Sec on 2.2.1 except we have implicitly moved the

”(cu, v)” into f and now allowed f to depend upon u.

Our finite element method is: uh,p ∈ Vh ⊂ H1
0 (Ω) such that

ϵ(∇uh,p,∇vh) = (f(uh,p), vh), ∀vh ∈ Vh. (5.3)

Note that we cannot use Lax-Milgram for proving existence and uniqueness of the nonlinear

problem; in fact this report will not concern itself with proving the existence or uniqueness of

this nonlinear problem and instead supposes that at least one solu on exists, just as Amrein

et. al [3]. The report instead relies on results such as those in [28] for checking final solu ons.

Wri ng X = H1
0 (Ω), we denote X−1 = H−1(Ω) as the dual space of X (cf. [7, p. 219]).

Hence, we may define the map Fϵ : X → X−1 by

⟨Fϵ(u), v⟩ := (ϵ∇u,∇v)− (f(u), v),∀v ∈ X,

where ⟨·, ·⟩ is the dual product inX−1 ×X .

Hence, theweak formula onmay bewri en in the equivalent nonlinear operator form: Find

u ∈ X such that

Fϵ(u) = 0. (5.4)

We define the ϵ-norm as:

∥u∥ϵ :=
(
∥∇u∥2L2(Ω) + ∥u∥

2
L2(Ω)

) 1
2
.

Newton’s method seeks to compute zeros such that Equa on (5.4) is sa sfied. Assuming

that the Fréchet deriva ve of Fϵ, F ′
ϵ exists, then the Newton’s method is given by: for an ini al
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guess, u0, we generate

un+1 = un +∆un, n ≥ 0,

where each update,∆un, sa sfies

F ′
ϵ(u

n)∆un = −Fϵ(u
n), n ≥ 0.

Newton’s method is not very reliable when the ini al guess is far away, so we introduce a

dampening parameter, θn ∈ [0, 1]:

un+1 = un − θn∆un, n ≥ 0,

where θn may be chosen according to [3, sec. 2.2]. We have chosen the value in a similar way,

except we choose the ϵ-norm in the calcula on of the parameter:

θn =

√
2τ∥Fϵ(un)∥−1

ϵ ,

where τ > 0 is the tolerance in which we hope to solve subsequent steps to within Newton’s

method.

For our par cular model problem in Equa on (5.1), the Fréchet deriva ve of Fϵ is given by

⟨F ′
ϵ(u)w, v⟩ =

∫
Ω

ϵw′v′ dx−
∫
Ω

f ′(u)wv dx.

Hence, given u0, Newton’s method is: Find un+1 ∈ X such that

F ′
ϵ(u

n)(un+1 − un) = −θnFϵ(u
n). (5.5)

Akin to the linear model problem, we may introduce two func onals to help us write this
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more concisely:

aϵ(u
n;un+1, v) = aϵ(u

n;un, v)− θnlϵ(un; v),∀v ∈ X, (5.6)

where

aϵ(u;w, v) :=

∫
Ω

(ϵw′v′ − f ′(u)wv) dx

and

lϵ(u; v) :=

∫
Ω

(ϵu′v′ − f(u)v) dx.

We can use aϵ and lϵ in an analogous way to the linear problem to compute the Newton

update at each Newton step.

5.1 Simple Numerics

5.1.1 Test Problem 1 (Nonlinear)

Problem 5.1.

The Bratu problem in one dimension has, depending upon the bifurca on parameter ϵ, some-

where between zero and two solu ons.

The data is set on Equa on (5.1) as f = exp(u), c ≡ 0, and we will allow ϵ to vary slightly.

We note from [28, p. 27] that the cri cal value of the bifurca on parameter is ϵc ≈ 1/3.514.

Provided that our bifurca on parameter ϵ > ϵc, the problem has two solu ons — and this is

the case that we will consider.

We will solve this nonlinear problem with 20 elements, from which we will vary the bifurca-

on parameter and ini al condi on. As suggested by Mohsen [28, p. 28], we will set the ini al
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condi on for each simula on to be

u0(x) = a sin(πx).

We show the results for various ini al condi ons and bifurca on parameters, producing Figure

5.1.

We note that, a er comparing with the maximum values of the solu on given by Mohsen

[28, p. 29], that the values appear to be correct.

5.1.2 Test Problem 2 (Nonlinear)

For this nonlinear test problem, we will actually choose a linear problem to make sure that

the solver works in this degenera ve case. We will take our new problem as the same as the

boundary layer problem, given as Problem4.2. For the parameters for our newmodel equa on,

we give these in Problem 5.2.

Problem 5.2.

A boundary layer problem, exhibi ng boundaries near x = 0 and x = 1, as given in [42, ex. 2]

with the exact solu on

u(x) = − exp(x/
√
ϵ)

exp(1/
√
ϵ) + 1

− exp(−x/
√
ϵ) exp(1/

√
ϵ)

exp(1/
√
ϵ) + 1

+ 1.

The data is set on Equa on (5.1) as ϵ = 10−3, f ≡ −1− u.

Running with the correct parameters produces Figure 5.2. We see that the features of the

solu on are present, very similarly to the solu ons shown in Sec on 4 which suggests that our

nonlinear solver works for the degenera ve linear case.
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5.1.3 Test Problem 3 (Nonlinear)

Problem 5.3.

Here we will solve the steady one-dimensional version of Fisher’s equa on with zero boundary

condi ons. The problem infinitely many solu ons [3, p. 1652].

The data is set on Equa on (5.1) as ϵ = 0.00025, f = u(u− 1).

We choose a similar ini al condi on to Amrein et. al [3, fig. 3] that consists of four plateaued

peaks at u0 = 1, and three plateaued troughs at u0 = −0.4. From this ini al data we produce

Figure 5.3.

The figure displays the same a ributes as those in [3] so that we can be fairly sure that

this works. Although we aren’t studying here the convergence or refinement proper es of

the approxima on, we note that the Newton solver converged within an l2-norm tolerance of

1× 10−3 between subsequent terms within 30 steps.
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Figure 5.1: Solu ons of Problem 5.1. Lower solu ons are displayed on the le and upper solu ons are displayed
on the right.
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Figure 5.2: Solu on of Problem 5.2.
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Figure 5.3: Ini al condi on (le ) and solu on (right) of Problem 5.3.
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Conclusions

In conclusion, we found that anhp-adap ve algorithm for finite elementmethods can greatly

reduce the degrees of freedom for high-accuracy results, especially when smooth func ons

with steep deriva ves are involved. This considerably reduced computa onal resources over

the global refinement strategy that would be necessary for the same accuracy. We did find

some situa ons where a p-adap ve algorithm yielded higher convergence rates between the

degrees of freedom and error, but the hp-adap ve was the most consistent in doing so.

We started in Sec on 2 by laying the background in hp-FEMs, crea ng a linear model prob-

lem, and proving that the chosen problem was well-posed.

We outlined the specific implementa on choices in Sec on 3, which were heavily influenced

by the work of Šolín et. al [33]; the implementa on focused on crea ng an efficient piece of

so ware: the efficiency was par cularly increased by the use of an intelligent cache with the

quadrature calcula ons and an efficient class structure. Further discussions were made at how

the code could be further op mised with, for example, parallelising the linear system solving

process and implemen ng a sparse matrix data structure. In par cular we note that we used a

non-parallelisable itera ve conjugate gradient method for solving all linear systems that arose,

which significantly restricts the available compu ng resources available on most modern-day

computers; we note that a parallelisable version of the conjugate gradient method could be

implemented, as suggested by Hestenes et. al [20]. We also note that the code was wri en in

a generic way, allowing for further adaptability and extension of features if future developers

were to con nue this project.

A posteriori error bounds were derived and proved for a linear problem in Sec on 4, in-

fluenced by the work of Schwab [32]. We further derived local element indicators leading to
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robust and efficient adap vity algorithms, and made use of a smoothness parameter that was

used in the work of Wihler [42]. We solved some numerical calcula ons for three chosen test

problems; we found that the h- and p-adap ve algorithms worked with varying success de-

pending upon the specific test problem, but the hp-adap ve algorithm consistently performed

well and yielded high (exponen al) rates of convergence. In nearly all cases, global refinement

of h and p separately were very costly and unnecessary.

Sec on 5 introduced a newmodel problem that was nonlinear (specifically semilinear). This

new model problem was implemented into the code, using inheritance to reduce code redun-

dancy from the linear solving process. In par cular we used a Newton solver to solve the re-

sul ng nonlinear system. For this model problemwe chose a further three test problems to be

solved, for which the results appeared to coincide with the results of other authors performing

the same calcula ons [28, 3].

Further work on this project could involve generalising the implementa on to work with

dimensions higher than one, which would benefit most real-world problems; our implementa-

on is concerned only with one-dimensional PDEs, but is designed in a way that would easily

support higher-dimensional PDEs in the future. We could also work toward implemen ng the

a posteriori error bounds and using them to give hp-adap ve algorithms to nonlinear model

problems, like the work demonstrated by Amrein et. al [3].
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Code

Note that all of the code for this project can be found on the GitHub repository, as shown

on Page 2. We will specifically list and discuss the code here for the Solve method of the

Solution_linear class, to give an idea of the process involved in the solvers. We also include

the calcula on of the value of the bilinear func onal, a(u, v), and linear func onal l(v).

1 void Solution_linear::Solve(const double &a_cgTolerance)

2 {

3 // Left and right boundary conditions.

4 double A = 0;

5 double B = 0;

6

7 // Degrees of freedom and elements pointer.

8 int n = this->mesh->elements->get_DoF();

9 Elements* elements = this->mesh->elements;

10

11 // Stiffness and matrix and load vector for the FEM sovler.

12 Matrix_full<double> stiffnessMatrix(n, n, 0);

13 std::vector<double> loadVector(n, 0);

14

15 // Loops over all elements.

16 for (int elementCounter=0; elementCounter<this->noElements;

++elementCounter)↪→

17 {
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18 // Pointer to our current element.

19 Element* currentElement =

(*(this->mesh->elements))[elementCounter];↪→

20

21 // All degrees of freedom associated with this element.

22 std::vector<int> elementDoFs =

elements->get_elementDoFs(elementCounter);↪→

23

24 // Loops over first combination of basis functions.

25 for (int a=0; a<elementDoFs.size(); ++a)

26 {

27 // Current first degree of freedom.

28 int j = elementDoFs[a];

29

30 // Basis functions needed.

31 f_double basis = currentElement->basisFunction(a, 0);

32

33 // Adds to load vector.

34 loadVector[j] += this->l(currentElement, basis);

35

36 // Loops over second combination of basis functions.

37 for (int b=0; b<elementDoFs.size(); ++b)

38 {

39 // Current second degree of freedom.

40 int i = elementDoFs[b];

41

42 // Basis functions needed.

43 f_double basis1 = currentElement->basisFunction(b, 0);

44 f_double basis2 = currentElement->basisFunction(a, 0);
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45 f_double basis1_ = currentElement->basisFunction(b, 1);

46 f_double basis2_ = currentElement->basisFunction(a, 1);

47

48 // Adds to stiffness matrix.

49 double value = stiffnessMatrix(i, j);

50 stiffnessMatrix.set(i, j, value +

this->a(currentElement, basis1, basis2, basis1_,

basis2_));

↪→

↪→

51 }

52 }

53 }

54

55 // Temporary load vector and boundary element contribution.

56 std::vector<double> F_(n);

57 std::vector<double> u0(n, 0);

58

59 // The degree of freedom to apply the second boundary condition at.

60 int m = this->mesh->elements->get_noElements();

61

62 // Zeroes rows and columns associated with first boundary condition.

63 for (int i=0; i<stiffnessMatrix.get_noRows(); ++i)

64 stiffnessMatrix.set(0, i, 0);

65 for (int j=0; j<stiffnessMatrix.get_noColumns(); ++j)

66 stiffnessMatrix.set(j, 0, 0);

67 loadVector[0] = 0;

68

69 // Zeroes rows and columns associated with second boundary

condition.↪→

70 for (int i=0; i<stiffnessMatrix.get_noRows(); ++i)
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71 stiffnessMatrix.set(m, i, 0);

72 for (int j=0; j<stiffnessMatrix.get_noColumns(); ++j)

73 stiffnessMatrix.set(j, m, 0);

74 loadVector[m] = 0;

75

76 // Enforces boundary condition on contribution vector.

77 u0[0] = A;

78 u0[m] = B;

79

80 // Removes contribution from load vector.

81 F_ = stiffnessMatrix*u0;

82 for (int i=0; i<n; ++i)

83 loadVector[i] -= F_[i];

84

85 // Enforces boundary condition in the stiffness matrix.

86 stiffnessMatrix.set(0, 0, 1);

87 stiffnessMatrix.set(m, m, 1);

88

89 // Calculates and stores the solution to a specified conjugate

gradient tolerance.↪→

90 this->solution = linearSystems::conjugateGradient(stiffnessMatrix,

loadVector, a_cgTolerance);↪→

91

92 // Re-enforces the boundary conditions.

93 this->solution[0] = A;

94 this->solution[m] = B;

95 }

96

97 double Solution_linear::l(Element* currentElement, f_double &basis)
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98 {

99 // Jacobian for this element.

100 double J = currentElement->get_Jacobian();

101

102 // Initialises return value.

103 double integral = 0;

104

105 // Gets element quadrature.

106 std::vector<double> coordinates;

107 std::vector<double> weights;

108 currentElement->get_elementQuadrature(coordinates, weights);

109

110 // Loops over all coordiantes and weights.

111 for (int k=0; k<coordinates.size(); ++k)

112 {

113 // Basis function and f values at this coordinate.

114 double b_value = basis(coordinates[k]);

115 double f_value =

this->f(currentElement->mapLocalToGlobal(coordinates[k]));↪→

116

117 // Adds these combinations to the return value.

118 integral += b_value*f_value*weights[k]*J;

119 }

120

121 // Returns value.

122 return integral;

123 }

124 double Solution_linear::a(Element* currentElement, f_double &basis1,

f_double &basis2, f_double &basis1_, f_double &basis2_)↪→
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125 {

126 // Jacobian for this element.

127 double J = currentElement->get_Jacobian();

128

129 // Initialises return value.

130 double integral = 0;

131

132 // Gets element quadrature.

133 std::vector<double> coordinates;

134 std::vector<double> weights;

135 currentElement->get_elementQuadrature(coordinates, weights);

136

137 // Loops over all coordinates and weights for first term in

equation.↪→

138 for (int k=0; k<coordinates.size(); ++k)

139 {

140 // Combination of basis functions at this coordinate.

141 double b_value = basis1_(coordinates[k]) *

basis2_(coordinates[k]);↪→

142

143 // Adds to the return value.

144 integral += this->epsilon*b_value*weights[k]/J;

145 }

146

147 // Loops over all coordinates and weights for second term in

equation.↪→

148 for (int k=0; k<coordinates.size(); ++k)

149 {

150 // Basis and c values at this coordinate.
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151 double b_value = basis1(coordinates[k]) *

basis2(coordinates[k]);↪→

152 double c_value =

this->c(currentElement->mapLocalToGlobal(coordinates[k]));↪→

153

154 // Adds to the return value.

155 integral += c_value*b_value*weights[k]*J;

156 }

157

158 // Returns value.

159 return integral;

160 }

The comments on this piece of code are hopefully clear enough to describe the process, but

the general idea is:

1. Loop over all elements

(a) For each element, find the associated degrees of freedom

(b) Loop over first combina on of degrees of freedom

i. Add value of l(v) (or nonlinear equivalent) to appropriate index in load vector

ii. Loop over second combina on of degrees of freedom

A. Add value of a(u, v) (or nonlinear equivalent) to appropriate index in s ff-

ness matrix

2. Find contribu on of boundary condi ons to the solu on

3. Remove boundary condi on contribu on from the load vector

4. Enforce both boundary condi ons

5. Solve the resul ng linear (or nonlinear) system
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