
FEM Algorithms in C++
G14DIS

MathemaƟcs 4th Year DissertaƟon
2019/20

School of MathemaƟcal Sciences, University of Noƫngham

AdamMaƩhew Blakey

14286792

Supervisor: Prof Paul Houston

Project code: PH D2

Assessment type: Research-Informed InvesƟgaƟon

I have read and understood the School and University guidelines on plagiarism. I confirm that this work
is my own, apart from the acknowledged references.

Abstract

This report invesƟgates efficient algorithms used in approximaƟng soluƟons to both linear

and nonlinear differenƟal equaƟons with the finite element method.

The report begins by laying the analyƟcal framework, seƫng up some model problems, and

(for the linear case) proving existence and uniqueness of soluƟons to these model problems.

All major results in this report are produced using a bespoke soŌware package, Ɵtled Blakey

FEM, which applies a posteriori error esƟmates to certain classes of linear and nonlinear model

problems; this applicaƟon leads to efficient adapƟvity strategies of both meshing and choice

of interpolaƟng funcƟons.

This report found that there exist hp-adapƟve strategies that yield exponenƟal convergence

rates between finite element soluƟons and true soluƟons for various model problems.

Acknowledgements

I am very grateful to my supervisor, Professor Paul Houston, for his invaluable guidance and

advice throughout this project — and for introducing me to such a fascinaƟng area of mathe-

maƟcs that I did not know existed!

A special thank you goes to Eleanor, Andy, Chris, and my mam, who have all helped through

the vital proofreading process.

Digital Copy

Visit https://github.com/JustAdamHere/G14DIS for a copy of the code used for results

in this report. You can also visit https://r.blakey.family/BlakeyFEMPresentation for a

copy of the presentaƟon slides given on 12th March 2020.

https://github.com/JustAdamHere/G14DIS
https://r.blakey.family/BlakeyFEMPresentation

Contents

1 IntroducƟon 6

2 Background 8

2.1 FEM NotaƟon . 8

2.2 Weak SoluƟons of PDEs in Rd . 14

2.2.1 Model Problem . 15

2.2.2 Lax-Milgram . 16

2.3 hp-FEM . 19

3 ImplementaƟon: Blakey FEM 21

3.1 Meshes . 23

3.2 Polynomial Spaces . 24

3.3 Elements . 28

3.4 Linear Solvers . 30

3.5 Nonlinear Solvers . 32

3.6 Quadrature . 33

3.7 Object-Oriented Design . 35

3.8 Simple Numerics . 37

4 A Posteriori Error EsƟmaƟon and AdapƟvity 41

4.1 A Posteriori Error EsƟmaƟon in 1D . 42

4.2 Example Problems . 58

4.3 h-adapƟvity . 59

4.4 p-adapƟvity . 67

4.5 hp-adapƟvity . 72

4.6 Results Summary . 81

5 Nonlinear Problems 87

5.1 Simple Numerics . 90

6 Conclusions 95

A Code 97

B References 104

SecƟon 1

IntroducƟon

DifferenƟal equaƟons are oŌen used to explain and predict new facts about everything that

changes conƟnuously [13] such as weather predicƟon, planetary orbits, and the best way to

design an aeroplane. It is vital, therefore, that we are able to compute soluƟons to these gov-

erning equaƟons to some reasonable accuracy.

Many differenƟal equaƟons do not have analyƟcal soluƟons, so one of two approaches is

usually taken instead: solve a modified simpler equaƟon to approximate the original soluƟon,

or approximate soluƟons directly [8, p. 260]; the laƩer is the focus of this report, specifically

using numerical methods, as these are the principal choice for those approximaƟng soluƟons

of differenƟal equaƟons.

Various opƟons for numerically approximaƟng soluƟons to differenƟal equaƟons exist in-

cluding finite differencemethods [34], finite volumemethods [26], and finite elementmethods

[10] which is the method of choice for this report. Finite element methods are advantageous

over othermethods as they can express complicated geometries (for example thework of Giani

et. al [14]) muchmore easily than finite difference methods [8, p. 746]. One can also derive re-

liable and efficient soluƟon-independent error bounds, that locally give indicaƟons of the size

of the error [42, p. 2733].

Finite element methods (FEMs) also permit high orders of convergence under the right con-

diƟons, through so-called p-refinement [27, p. 228]; however these high convergence rates

can rely on certain amounts of regularity [10, p. 125]. There also exist h-adapƟve techniques,

where one can sequenƟally change the domain upon which the soluƟon is approximated [41],

but these techniques can only aƩain polynomial convergence rates at best [27, p. 228]. There-

fore, in recent years, techniques concerned with a combinaƟon of the two (called hp-adapƟve

SecƟon 1 FEM Algorithms in C++

methods) have become increasingly sought and applied effecƟvely [42, p. 2731]. These hp-

adapƟve methods require two main ingredients: computable local error esƟmators, and steer-

ing criterion (presented in this reportwith a smoothness indicator) [22], whichwill be discussed

in detail in SecƟon 4.

The moƟvaƟon for hp-adapƟve FEM originates in the numerical soluƟon of pracƟcal prob-

lems of physics or engineering, where one oŌen encounters the difficulty that the overall accu-

racy of the numerical approximaƟon is degraded by local singulariƟes [39][p. 67]. By calculaƟng

local error esƟmators, one can subsequently use these to enrich the underlying approximaƟon

space in an adapƟve manner [23, p. 2642].

This report found thath-adapƟve algorithms could yield high (polynomial) convergence rates

for someproblems, and p-adapƟve algorithms could yield high (exponenƟal) convergence rates.

Whilst these rates were oŌen found to be more beneficial than their respecƟve global refine-

ment algorithms, the hp-adapƟve algorithm appeared to perform the best at minimising both

the error (in an appropriate norm) and the degrees of freedom.

StarƟng with a basic introducƟon in SecƟon 2, we will introduce the common notaƟons used

in FEManalysis, aswell as introducing someone-dimensionalmodel problemswhich inform the

numerical results in later secƟons. SecƟon 3 discusses the specific implementaƟon features of a

bespoke soŌware package wriƩen for this project, in parƟcular highlighƟng the design choices

made to benefit performance. We then derive local error esƟmators for a one-dimensional

problem in SecƟon 4, paving the way for the h-, p-, and hp-adapƟve algorithms, as well as a

comparison of their performance through some numerical experiments. SecƟon 5 introduces

a nonlinear problem from which we derive similar error esƟmators, and apply these to more

numerical experiments. Concluding the report, SecƟon 6 highlights the results of this project,

what problems were encountered, and some suggesƟons for further work in the area.

page 7

SecƟon 2

Background

In this secƟon, the mathemaƟcal foundaƟons for this report are laid out; these informmuch

of the implementaƟon in SecƟon 3 as well as the error analysis in SecƟon 4.

2.1 FEM NotaƟon

We will introduce some preliminary noƟons needed for understanding the mathemaƟcs to

finite element methods.

2.1.1 Lp Spaces

In general, it does not make sense to ask what the length of a vector is in a vector space, but

a norm is a concept designed to address this [11, p. 8]. There are many choices of norms in

different vector spaces, as long as they saƟsfy some condiƟons.

DefiniƟon 2.1 (Norm, similar to [11, def. 1.3.1]).

We define a norm as a funcƟon x→ ∥x∥ some vector space, Ω, to R, provided that it saƟsfies

the following condiƟons:

• ∥x∥ = 0⇒ x = 0

• ∥λx∥ = |λ|∥x∥,∀x ∈ E, ∀λ ∈ C

SecƟon 2 FEM Algorithms in C++

• ∥x+ y∥ ≤ ∥x∥+ ∥y∥,∀x, y ∈ Ω

Wemay also introduce the concept of an inner product, from which we may induce a norm.

DefiniƟon 2.2 (Inner product, similar to [11, def 3.2.1]).

Wedefine an inner product on a vector space, V , as amapping (·, ·) : V ×V → C that saƟsfies:

• (x, y) = (y, x), ∀x, y ∈ V

• (αx+ βy, z) = α(x, z) + β(y, z),∀x, y, z ∈ V ;∀α, β ∈ C

• (x, x) ≥ 0, with (x, x) = 0⇔ x = 0

Note that we may induce a norm from the inner product by

∥x∥V :=
√

(x, x),

where x ∈ V .

For ease of notaƟon, we also make the following two definiƟons:

DefiniƟon 2.3 (Range of integers).

We define

[a, b]N := [a, b] ∩ N,

where [a, b] = {x : a ≤ x ∧ x ≤ b, a, b ∈ R}. We do this similarly for (a, b), [a, b), and (a, b]

noƟng that we do allow slightly abusive notaƟon with b =∞.

DefiniƟon 2.4 (Inner product notaƟon).

We define the inner product, for u, v ∈ V as

(u, v) :=

∫
Ω

uv dx.

page 9

FEM Algorithms in C++ SecƟon 2

Lp spaces, commonly referred to as Lebesgue spaces, refer to the space of funcƟons where

some integral of a funcƟon is finite, as shown in the following definiƟon.

DefiniƟon 2.5 (Lp space, [9, p. 409]).

For u a complex-valued, locally integrable funcƟon, the Lp space is defined as:

L2(Ω) := {u : ∥u∥L2(Ω) <∞},

with norm

∥u∥L2(Ω) :=

(∫
Ω

|u(x)|pdx
) 1

p

.

2.1.2 Weak DerivaƟves and FEMs

When dealing with finite element methods, we will oŌen come across funcƟons such as

u(x) =


x if x > 0

−x if x ≤ 0,

where the funcƟon may be conƟnuous but the derivaƟve may be disconƟnuous at a point. We

therefore may introduce the concept of a weak derivaƟve, as well as some other notaƟon that

we will use.

DefiniƟon 2.6 (MulƟ-index).

If α = (α1, ..., αm) is anm-tuple where each αi ∈ N0, then we call α a mulƟ index and denote

xα as the monomial

xα1 ...xαm

and similarlyDα as

Dα1
1 ...D

αm
m

whereDi =
∂

∂xj
[2, p. 1]. We also denote |α| = α1 + ...+ αm.

DefiniƟon 2.7 (Weak derivaƟve).
page 10

SecƟon 2 FEM Algorithms in C++

For u ∈ V , where
∫
Ω
|u| dx, we define w as the αth weak derivaƟve u provided that it saƟsfies

∫
Ω

u(x)Dαv(x) dx = (−1)|α|
∫
Ω

w(x)v(x) dx,

for all v ∈ C∞
0 (Ω), whereC∞

0 (Ω) is the space of infinitely-differenƟable funcƟonswith compact

support on Ω and α defines a mulƟ-index.

Sobolev spaces act as an extension to the Lp spaces with the inclusion of some regularity on

weak derivaƟves of funcƟons.

DefiniƟon 2.8 (Sobolev space, [33, p. 2]).

For k ∈ [0,∞)N and Ω ⊆ Rm, with Lipschitz-conƟnuous boundary, we define:

Hk(Ω) := {u ∈ L2(Ω) : Dαu ∈ L2(Ω),∀|α| ≤ k},

which is equipped with norm

∥u∥Hk(Ω) :=

∑
|α|≤k

∥Dαu∥2L2(Ω)

 1
2

,

and a semi-norm of

|u|Hk(Ω) :=

∑
|α|=k

∥Dαu∥2L2(Ω)

 1
2

.

We note that Hk(Ω) is a Hilbert space, and is oŌen referred to as the one-dimensional

Sobolev space of kth order on Ω.

The Cauchy-Schwarz inequality is very useful for the analysis of the a posteriori error bound

in SecƟon 4, so we define it here: For u, v ∈ V , V a vector space with some norm:

|(u, v)V | ≤ ∥u∥V ∥v∥V , (2.1)

where (·, ·)V is an inner product on V , and ∥·∥V is a norm on V .
page 11

FEM Algorithms in C++ SecƟon 2

We also have the triangle inequality: For x, y ∈ V , where V is a vector space with an inner

product, we have

∥u+ v∥ ≤ ∥u∥+ ∥v∥, (2.2)

as stated by Debnath et. al [11, co. 3.2.10].

We also state the following lemma, which follows directly from the definiƟon of ∥·∥H1(Ω).

Lemma 2.1.

For any u ∈ H1(Ω) we have

∥u∥L2(Ω) ≤ ∥u∥H1(Ω).

We now have the mathemaƟcal tools to define what a finite element space describes. We

state it here in its most general form, but in pracƟcal terms we will deal directly with these

individual aspects of the finite element without menƟon of this formal definiƟon.

DefiniƟon 2.9 (Finite element, [10, p. 78]).

A finite element in Rd is a tripleK = (Ω, P,Σ), where:

• Ω is a closed subset of Rd, int Ω ̸= ∅ and ∂Ω is Lipschitz-conƟnuous;

• P is a space of funcƟons fromK to R;

• Σ := {ϕi}Ni is a finite set of linearly independent linear forms, ϕi, defined overP ; it is also

assumed that Σ is P -unisolvent. That is: ∀αi ∈ R,∃!p ∈ P s.t. ϕi(p) = αi∀i ∈ [1, N]N.

We call Σ the degrees of freedom (DoF).

Finite element methods rely heavily on the use of integraƟon by parts; we will state the

divergence theorem here, then state prove integraƟon by parts.

Theorem 2.1 (Divergence theorem).

For Ω ⊆ Rn compact and ∂Ω piecewise smooth, u sufficiently differenƟable in Ω, and n the

page 12

SecƟon 2 FEM Algorithms in C++

outward-poinƟng unit normal at each point on ∂Ω we have

∫
Ω

∇u dx ≡
∮
∂Ω

un dS.

From the divergence theorem, given in Theorem 2.1, we can now construct a proof of inte-

graƟon by parts.

Theorem 2.2 (IntegraƟon by parts).

Taking Ω and n as in Theorem 2.1, we have

∫
Ω

u∇u dx ≡
∫
∂Ω

uvndS −
∫
Ω

v∇u dx,

where u and v are sufficiently differenƟable in Ω.

Proof. From Theorem 2.1 we may take u→ uv. This yields

∫
Ω

∇uv dx =

∮
∂Ω

(uv)n dS

.

It is convenient to now write each vector in terms of its individual components, denoted by

index i: ∫
Ω

∂

∂xi
(uivi) dx =

∮
∂Ω

(uivi)ni dS, ∀i ∈ [1, n]N.

By the product rule for differenƟaƟon we have

∫
Ω

∂ui
∂xi

vi dx+

∫
Ω

ui
∂vi
∂xi

dx =

∮
∂Ω

(uivi)ni dS, ∀i ∈ [1, n]N,

and returning to the original notaƟon we have

∫
Ω

(∇u)v dx+
∫
Ω

u(∇v) dx =

∮
∂Ω

uvn dS.

page 13

FEM Algorithms in C++ SecƟon 2

AŌer some rearrangement we have the result:

∫
Ω

u∇v dx =

∫
∂Ω

uvn dS −
∫
Ω

v∇u dx.

2.2 Weak SoluƟons of PDEs in Rd

For solving parƟal differenƟal equaƟons we ulƟmately want to find the soluƟon, u, of the

equaƟon in some space, V . MathemaƟcally we want to find u ∈ V s.t.

Lu = f, in Ω (2.3)

where L is some differenƟal operator and f is some forcing funcƟon independent of u. We

may instead consider a similar problem—which we refer to as the weak formulaƟon—which

is roughly constructed through the following steps:

1. MulƟply EquaƟon (2.3) by a test funcƟon, v ∈ V ;

2. Integrate the resulƟng equaƟon over the domain, Ω;

3. Apply integraƟon by parts to reduce the highest order of derivaƟon on u and v;

4. Apply appropriate boundary condiƟons to u and v.

This weak formulaƟonwill yield soluƟons for which not all derivaƟvesmay exist (ormay have

weak derivaƟves). We call these soluƟons weak soluƟons (opposed to strong soluƟons, which

saƟsfy the criteria in DefiniƟon 2.7). A specific example of a weak formulaƟon is calculated in

the following secƟon.

page 14

SecƟon 2 FEM Algorithms in C++

2.2.1 Model Problem

We restrict ourselves for the remainder of the report to consider only two model problems:

a linear and a nonlinear problem. In this secƟon, we will only state the linear PDE problem and

derive its weak formulaƟon, and then prove the existence and uniqueness of soluƟons. The

nonlinear problem will be introduced in SecƟon 5.

We consider the parƟal differenƟal equaƟon stated in EquaƟon (2.4), i.e., given a bounded

Lipschitz domain Ω ⊆ Rd, d ≥ 1, we seek u such that

−ϵ∆u+ cu = f(x), x ∈ Ω, (2.4a)

u = 0, on ∂Ω. (2.4b)

Here, ϵ > 0 and c ≥ 0 and f represent the reacƟon and forcing terms, respecƟvely. This

is a relaƟvely standard model equaƟon and similar problems are also chosen by Wihler [42],

Houston et. al [21], and Mitchell et. al [27].

For this problem, we seek u in the funcƟon space H1
0 (Ω) =: V ; note that this imposes our

boundary condiƟons, and assumes sufficient regularity of the soluƟon, u.

To derive the weak formulaƟon of EquaƟon (2.4) we first mulƟply EquaƟon (2.4a) by v ∈

H1
0 (Ω) and integrate over Ω, which yields:

−ϵ
∫
Ω

∆uv dx+

∫
Ω

cuv dx =

∫
Ω

fv dx, ∀v ∈ V.

We noƟce now that u has two derivaƟves (from the Laplacian) in the first term of this ex-

pression and v has zero. We can therefore apply integraƟon by parts, as given in Theorem 2.2
page 15

FEM Algorithms in C++ SecƟon 2

to give

ϵ

∫
Ω

∇u · ∇v dx−
∫
∂Ω

(∇u · n)v ds+
∫
Ω

cuv dx =

∫
Ω

fv dx, ∀v ∈ V,

where n denotes the unit outward normal vector to the boundary, ∂Ω. NoƟng that v ∈ V and

hence v = 0 on ∂Ω we get: find u ∈ V such that

ϵ

∫
Ω

∇u · ∇v dx+
∫
Ω

cuv dx =

∫
Ω

fv dx, ∀v ∈ V.

RewriƟng the above equaƟon in inner product notaƟon, the weak formulaƟon of EquaƟon

(2.4) is given by: find u ∈ V such that

ϵ(∇u,∇v) + (cu, v) = (f, v), ∀v ∈ V. (2.5)

NoƟce that this is sƟll an infinite-dimensional problem which will be projected to a finite-

dimensional space later.

We will see in SecƟon 2.3 that this model problem has a soluƟon that is unique.

2.2.2 Lax-Milgram

The Lax-Milgram theorem, named aŌer the pair that solved it in 1954, is a pivotal theorem

that guarantees existence and uniqueness of soluƟons to the problems described in SecƟon

2.2.1.

Theorem 2.3 (Lax-Milgram, [11, p. 157]).

Let a be a bounded, coercive, bilinear funcƟonal on a Hilbert space, V . For every bounded linear

funcƟonal l on V , there exists a unique u ∈ V such that

a(u, v) = l(v), ∀v ∈ V.

page 16

SecƟon 2 FEM Algorithms in C++

We may note that to show boundedness, we can instead show that a and l are conƟnuous.

Therefore to saƟsfy Theorem 2.3 for a bilinear funcƟonal, a, and a linear funcƟonal, l, we just

need to find c0, c1, c2 ∈ R s.t.

• Coercivity of a: a(u, u) ≤ c0∥u∥2H1(Ω);

• ConƟnuity of a: |a(u, v)| ≤ c1∥u∥H1(Ω)∥v∥H1(Ω);

• ConƟnuity of l: |l(v)| ≤ c2∥v∥H1(Ω).

We will now use the Lax-Milgram theorem to prove uniqueness and existence of the linear

model problem outlined in SecƟon 2.2.1.

Lemma 2.2 (Uniqueness and existence of linear model problem).

EquaƟon (2.4) admits a soluƟon that is unique.

Proof. We begin by taking

a(u, v) := ϵ(∇u,∇v) + (cu, v)

and

l(v) := (f, v)

from EquaƟon (2.5), where u, v ∈ H1(Ω).

From the definiƟons of a and l we see immediately that they are respecƟvely bilinear and

linear in their arguments.

To show coercivity of a, we see that a(u, u) = ϵ∥u∥L2(Ω) + ∥
√
cu∥L2(Ω).

Let cs := maxx(
√
c(x)). Then:

a(u, u) = ϵ∥u∥2L2(Ω) +
∥∥√cu∥∥2

L2(Ω)

≤ ϵ∥u∥2L2(Ω) + c2s∥u∥
2
L2(Ω)

≤ c0/2∥u∥2L2(Ω) + c0/2∥u∥2L2(Ω),

page 17

FEM Algorithms in C++ SecƟon 2

where we have now defined c0 := 2max(ϵ, c2s). NoƟng Lemma 2.1, we have coercivity:

a(u, v) ≤ c0∥u∥2H1(Ω).

For conƟnuity of a, let us recall that a(u, v) ≡ ϵ(∇u,∇v) + (cu, v).

By the triangle inequality from EquaƟon (2.2) we have

|a(u, v)| = |ϵ(∇u,∇v) + (cu, v)|

≤ |ϵ(∇u,∇v)|+ |(cu, v)|

= ϵ|(∇u,∇v)|+ cm|(cu, v)|,

noƟng that ϵ > 0 and cm := maxx |c(x)|.

By employing the Cauchy-Schwarz inequality from EquaƟon (2.1) we get

|a(u, v)| ≤ ϵ∥∇u∥L2(Ω)∥∇v∥L2(Ω) + cm∥u∥L2(Ω)∥v∥L2(Ω).

By leƫng c1 := maxx(ϵ, cm) we have conƟnuity:

|a(u, v)| ≤ ϵ∥∇u∥L2(Ω)∥∇v∥L2(Ω) + cm∥u∥L2(Ω)∥v∥L2(Ω)

≤ c1∥∇u∥L2(Ω)∥∇v∥L2(Ω) + c1∥u∥L2(Ω)∥v∥L2(Ω)

≤ c1∥∇u∥L2(Ω)∥∇v∥L2(Ω) + c1∥u∥L2(Ω)∥v∥L2(Ω)

+ c1∥∇u∥L2(Ω)∥v∥L2(Ω) + c1∥u∥L2(Ω)∥∇v∥L2(Ω)

≤ c1(∥u∥2L2(Ω) + ∥∇u∥
2
L2(Ω))

1
2 (∥v∥2L2(Ω) + ∥∇v∥

2
L2(Ω))

= c1∥u∥H1(Ω)∥v∥H1(Ω).

page 18

SecƟon 2 FEM Algorithms in C++

To show conƟnuity of l, we first recall the definiƟon of l as

l(v) ≡ (f, v).

Employing again the Cauchy-Schwarz inequality gives

|l(v)| = |(f, v)|

≤ ∥f∥L2(Ω)∥v∥L2(Ω).

NoƟng Lemma 2.1 gives

|l(v)| ≤ ∥f∥L2(Ω)∥v∥H1(Ω),

and defining c2 := ∥f∥L2(Ω) we have

|l(v)| ≤ c2∥v∥H1(Ω),

which shows that l(v) is a conƟnuous funcƟonal.

We have shown that the bilinear funcƟonal, a, is coercive and conƟnuous inH1(Ω), and we

have shown that the linear funcƟonal, l, is conƟnuous inH1(Ω). By Theorem 2.3 we have that

∃!u ∈ H1(Ω) s.t.

a(u, v) = l(v), ∀v ∈ H1(Ω),

which is the same as saying that EquaƟon (2.4) admits a unique soluƟon.

2.3 hp-FEM

When seƫngupour FEMversion of the problem, it is helpful to set it up in such away that the

size, shape, and degree of the polynomial interpolant on each elementmay vary independently

of any other element. We make the following definiƟons.
page 19

FEM Algorithms in C++ SecƟon 2

DefiniƟon 2.10 (Polynomial space).

Akin to the definiƟon in [10], PP (Ω) = {u(x) : u is a polynomial of degree r ≤ P on Ω}.

We could have chosen, for example, B-splines or Fourier series to express our soluƟons, but

we have chosen polynomials here.

Now we have a general definiƟon of an FEM where we may freely choose the width of ele-

ments (h) and the polynomial degrees of the interpolants (p), and hence the name of hp-FEMs.

We create a mesh in one dimension which is the set of coordinates, {xi}Ni=0, that span Ω.

We note that the coordinates do not have to be evenly spaced, but we do require that they are

ordered x0 < ... < xN .

x0 x1 ... xN−1 xN

We take EquaƟon 2.5, which describes an infinite-dimensional problem, and we now re-

strict to a finite-dimensional problem. For some set of basis funcƟons, {ϕj}Mj=0 that lie in

PP (xi−1, xi) for some i ∈ [1, N], we now define

Vh := {u ∈ H1(Ω) : u|(xi−1,xi) ∈ PP (xi−1, xi), i ∈ [1, N]N},

so that the soluƟon restricted to each element is a polynomial. Our new problem, which we

refer to as the finite element approximaƟon, is: find uh,p ∈ Vh such that

ϵ(∇uh,p,∇vh) + (cuh,p, vh) = (f, vh), ∀vh ∈ Vh. (2.6)

We stress here that this is now a finite-dimensional problem, which can be approximated

computaƟonally.

page 20

SecƟon 3

ImplementaƟon: Blakey FEM

Many FEM solvers already exist such as Autodesk SimulaƟon, FEFLOW, Deal II, FEniCS, and

Goma; these soŌware packages are wriƩen in a range of different languages, all set up to solve

slightly different problems, making use of specific language features. However many of these

soŌware packages fail to make use of hp-adapƟve methods, which can lead to very high orders

of convergence if used correctly [42].

Our implementaƟon is called Blakey FEM and is wriƩen in C++. C++ is low-level and gives

the programmer control of memory management, which allows for more efficient algorithms

[24]. It is also an object-oriented language: the object-oriented paradigm is convenient for us

humans, as its primary focus is to define the structure of how the data will be organised and

is oŌen likened to real life examples. The intuiƟveness of this organisaƟon would allow a dog

class, say, to have a method Dog.bark(). This intuiƟveness is also oŌen extended through

a technique called abstracƟon, which allows other programmers or users to deal only with

interfaces of classes, and not the specific implementaƟon; this may mean to say that we don’t

really care how a dog barks, as long as it barks.

In real life we may encounter objects that are very similar and share some common logic;

the object-oriented paradigm gives us a mechanism called inheritance which allows for some

methods and data to be wriƩen in the super-class and be reused in the sub-classes. This can

be best described by a specific example. Inspired from [29], we may make an inheritance dia-

gram of structures that we may encounter in our everyday lives; this idea then extends to how

we may construct classes in an object-oriented language. Take Figure 3.1, for example, which

shows an inheritance diagram of some animals along with some methods. NoƟce that the

middle porƟons of the nodes indicate structural properƟes (including data), and the boƩom

FEM Algorithms in C++ SecƟon 3

porƟons indicate methods (manipulators to the data).

We see from Figure 3.1 that all derived classes of Animal (i.e. Mammal, Cat, Reptile, Human,

and Snake) all share, among others, the property hungerLevel (so every animal can be hun-

gry). However it only makes sense for Cat to have the method meow(), for obvious cat-related

reasons.

Animal
hungerLevel
energyLevel
eat()

Mammal
skinColour
needsToSweat

Cat
clawLength
meow()

Human
languageSpoken
sayHello()

RepƟle
scalesShedded

Snake
poisonLevel
shedSkin()
bite()

Figure 3.1: An example of an inheritance diagram with different animals and categories of animals.

The code structure and implementaƟon choices of Blakey FEMare heavily influenced by [33],

which details choices for all aspects needed to be considered in an FEMprogram. The following

secƟons describe the choicesmade for implemenƟng the code including details regarding linear

solvers, quadrature calculaƟon, and the specific object-oriented design structure. We note,

however, that Blakey FEM is currently a one-dimensional FEM package — but design choices

have been made that would support easy extensibility to higher dimensions.

page 22

SecƟon 3 FEM Algorithms in C++

3.1 Meshes

A mesh describes the discreƟsed version of the domain upon which we are solving and —

depending upon how the domain is discreƟsed— can actually have a huge impact upon on our

numerical approximaƟon of the soluƟon (as demonstrated in the work of Wilbraham [43], but

now commonly referred to as Gibbs phenomenon).

With our implementaƟonwedecided tomake a class Meshwhich basically acts as a container

for the elements, for which a class structure is displayed in Figure 3.2. The declaraƟons for this

class can be found at ./src/mesh.hpp and the definiƟons can be found at ./src/mesh.cpp,

through the GitHub repository give on Page 2.

Mesh
- noElements : int
- noNodes : int
- dimProblem : int
- ownsElements : bool
+ elements : Elements*
+ Mesh(a_noElements : int)
+ Mesh(a_elements : Elements)
+ Mesh()
+ get_dimProblem() : int
+ get_noElements() : int
+ get_noNodes() : int

Figure 3.2: Class structure for Mesh.

There are two constructors: Mesh(int a_noElements) and Mesh(Elements a_elements) .

The former constructs a mesh on [0, 1]with elements of equal width; and the laƩer constructs

a mesh with the provided elements, which the user should populate manually for more control

over the mesh.

The Elements* elements property is a pointer to an instance of the Elements class de-

scribed in the next secƟon. These are populated either through the first constructor or refer-

enced by the second constructor.

Theother properƟes are relaƟvely self-explanatory, with the relevant geƩers: int noElements

page 23

FEM Algorithms in C++ SecƟon 3

is the number of elements in the mesh, int noNodes is the number of nodes in the mesh,

and int dimProblem is the dimension of the problem. We note that the dimension of the

problem for the implementaƟon in this report is fixed as 1; however, due to the object-oriented

techniques and careful design of the implementaƟon, it would be relaƟvely easy to implement

meshes on higher dimensions — and this parameter in the class would help to facilitate this.

3.2 Polynomial Spaces

With the hp-FEMs that we are implemenƟng, we have chosen the shape funcƟons as poly-

nomials — and we need to be able to describe these polynomial basis funcƟons in general for

any order exponent and for any order derivaƟve. We could have also chosen funcƟons besides

polynomials, such as Fourier shape funcƟons [19] or B-splines (although technically polynomi-

als, they don’t behave in the same way with degrees of freedom) [16, 17]; however we have

chosen polynomials due to their high convergence rates and resulƟng reducƟon in the number

of degrees of freedom [17, p. 1].

As well as the choice of the type of funcƟons, we now have a further choice to make: what

kinds of polynomials we want, remembering that a certain amount of regularity will already be

imposed, depending upon the space in which we are seeking soluƟons. An obvious choice of

polynomials would be Lagrange or Legendre polynomials, but we have instead chosen to use

LobaƩo shape funcƟons, employed in [33, p. 25] and [40, p. 48]; this choice of basis funcƟons

gives us a hierarchical basis set.

We begin by introducing the Legendre polynomials in one dimension as given by

L0(x) = 1, (3.1a)

L1(x) = x, (3.1b)

Ln(x) =
2n− 1

n
xLn−1(x)−

n− 1

n
Ln−2(x), n ≥ 2, (3.1c)

page 24

SecƟon 3 FEM Algorithms in C++

cf. [33, p. 22]. We can also define the LobaƩo shape funcƟons by

l0(x) =
1− x
2

, (3.2a)

l1(x) =
1 + x

2
, (3.2b)

ln(x) =
√
n− 1/2

∫ x

−1

Ln−1(ξ) dξ, n ≥ 2, (3.2c)

cf. [33, p. 25]. We noƟce that Legendre polynomials are orthogonal, meaning that we have∫ 1

−1
Ln(x) dx = 0, n ≥ 1. This helpfully means that ln(1) = 0,∀n ≥ 2. We also noƟce by

definiƟon that ln(−1) = 0,∀n ≥ 2, so the LobaƩo shape funcƟons vanish at both sides of the

domain for n ≥ 2.

We have chosen to implement these LobaƩo shape funcƟons as our basis funcƟons within

the Element class, which is described more in SecƟon 3.3.

We note that these funcƟons are defined on [−1, 1], which will be the domain for our one-

dimensional reference element. For actual implementaƟon, we can define the Legendre poly-

nomials relaƟvely easily with the recursive formula given in EquaƟon (3.1), and we do so within

the quadrature namespace (mainly for ease when defining the Gauss-Legendre quadrature).

However, the definiƟons of the LobaƩo funcƟons are a liƩle more tricky because of the integral

that appears in the definiƟon. With this in mind we state the following result.

Lemma 3.1.

The nth, n ≥ 2, LobaƩo shape funcƟon can be wriƩen as

ln(x) ≡
√

2n− 1

2

(
Ln+1(x)− Ln−1(x)

)
.

page 25

FEM Algorithms in C++ SecƟon 3

Proof. By [33, eq. 1.43], we know that

Ln(ξ) ≡
d
dξ

(
Ln+1(ξ)− Ln−1(ξ)

)
.

IntegraƟng this on [−1, x] gives

∫ x

−1

Ln(ξ) dξ =
(
Ln+1(x)− Ln−1(x)

)
−
(
Ln+1(−1)− Ln−1(−1)

)
=
(
Ln+1(x)− Ln−1(x)

)
−
(
(−1)n+1 − (−1)n−1

)
=
(
Ln+1(x)− Ln−1(x)

)
,

which, by our definiƟon in EquaƟon (3.2), is simply

ln(x) =
√
n− 1/2

(
Ln+1(x)− Ln−1(x)

)
.

Rearranging gives the desired result.

From EquaƟon (3.1) we can calculate Legendre polynomials generally, but not their deriva-

Ɵves. The derivaƟves for n = 0, 1 are straighƞorward, but not for n ≥ 2. Hence, we need

to determine how to compute the derivaƟve of the Legendre polynomials for any order; this

is required for the proceeding hp-adapƟvity algorithm. By following a proof by inducƟon from

Lemma 3.2 we can ulƟmately construct such a method.

Lemma 3.2.

The kth, k ≥ 1, derivaƟve of a one-dimensional Legendre polynomial of the nth, n ≥ 2, order

is defined by

dk

dxk
Ln(x) =

2n− 1

n− 1
xL

(k)
n−1(x)−

n

n− 1
L
(k)
n−2(x) + (k − 1)

2n− 1

n− 1
L
(k−1)
n−1 (x).

page 26

SecƟon 3 FEM Algorithms in C++

Proof. We first test for the base case (k = 1). From this, we get

L′
n(x) =

2n− 1

n− 1
xL′

n−1(x)−
n

n− 1
L′
n−2(x),

which is true by differenƟaƟng and rearranging EquaƟon (3.1c) and employing

Ln(x) =
d
dx

(
Ln+1(x)− Ln−1(x)

)
,

cf. the proof of Lemma 3.1 (and [33, eq. 1.43]).

Let’s now assume that Lemma 3.2 holds for some k ≥ 2, which is just

dk

dxk
Ln(x) =

2n− 1

n− 1
xL

(k)
n−1(x)−

n

n− 1
L
(k)
n−2(x) + (k − 1)

2n− 1

n− 1
L
(k−1)
n−1 (x).

DifferenƟaƟng this again gives

dk+1

dxk+1
Ln(x) =

2n− 1

n− 1

d
dx

(
xL

(k)
n−1(x)

)
− n

n− 1
L
(k+1)
n−2 (x) + (k − 1)

2n− 1

n− 1
L
(k)
n−1(x).

By the product rule we may expand the differenƟaƟon into the first RHS term, giving

dk+1

dxk+1
Ln(x) =

2n− 1

n− 1

(
L
(k)
n−1(x) + xL

(k+1)
n−1 (x)

)
− n

n− 1
L
(k+1)
n−2 (x) + (k − 1)

2n− 1

n− 1
L
(k)
n−1(x)

=
2n− 1

n− 1
xL

(k+1)
n−1 (x)− n

n− 1
L
(k+1)
n−2 (x) + k

2n− 1

n− 1
L
(k)
n−1(x),

which gives the desired result.

By the principles of mathemaƟcal inducƟon, we have shown that the lemma is true for the

base case and inducƟve case, and so we conclude that the lemma is true for all k ≥ 1.
page 27

FEM Algorithms in C++ SecƟon 3

Since the LobaƩo shape funcƟons are calculated by a linear combinaƟon of Legendre poly-

nomials (by Lemma 3.1), we now have a method for calculaƟng our basis funcƟons of any or-

der and any derivaƟon. The method f_double Element:basisFunction(int n, int i)

in the Element class calculates any derivaƟve of any order basis funcƟon, making use of the

f_double quadrature::legendrePolynomial(int n, int i) method in thequadrature

namespace. Note that the Legendre polynomials and their derivaƟves calculated here are one

dimensional.

3.3 Elements

The element class was originally designed to be an abstract type, where children classes

could take various forms in various dimensions (for example intervals in 1D, or triangles or

squares in 2D, or tetrahedra or tetrahedra in 3D). Since Blakey FEM has been designed to solve

1D problems only, we have instead decided to make our element class a concrete class that

implements only intervals.

As well as creaƟng a class named Elementwe also decided to create a class called Elements

which is essenƟally a wrapper for many Element instances. Both of these classes are described

in Figure 3.3.

There are two constructors for this class: Element(Element element) which is a copy

constructor (and has same logic as the equals operator), and Element(int elementNo, int

noNodes, vector<int> nodeIndices, vector<double>* nodeCoordinates, int

polynomialDegree) which provides the class with an element number, the number of nodes

for the element (although in 1D this will be fixed to 2), the indices of the nodes, a pointer to

the node coordinates vector, and the polynomial degree for this element.

The destructor of Element does not do anything special: but it certainly does not delete the

storage at nodeCoordinates, which belongs to the Elements container. N.b. the Element and

Elements classes actually perform very different funcƟons in this implementaƟon.
page 28

SecƟon 3 FEM Algorithms in C++

Element
- elementNo : int
- noNodes : int
- polynomialDegree : int
- nodeIndices : vector<int>
- nodeCoordinates : vector<double>*
- init_Element(int elementNo, int noNodes, vector<int> nodeIndices, vector<double>*
nodeCoordinates, int polynomialDegree) : void
+ Element(Element element)
+ Element(int elementNo, int noNodes, vector<int> nodeIndices, vector<double>* nodeCo-
ordinates, int polynomialDegree)
+ Element()
+ operator=(Element element) : Element
+ mapLocalToGlobal(double xi) : double
+ basisFuncƟon(int n, int i) : f_double
+ get_Jacobian() : double
+ get_elementNo() : int
+ get_noNodes() : int
+ get_nodeCoordinates() : vector<double>
+ get_rawNodeCoordinates() : vector<double>*
+ get_nodeIndices() : vector<int>
+ get_elementQuadrature(vector<double> coordinates, vector<double> weights) : void
+ get_polynomialDegree() : int
+ set_polynomialDegree(int p) : void

Figure 3.3: Class structure for Element.

The method double mapLocalToGlobal(double xi) takes a point on the local domain

(on [−1, 1]) and calculates where that point corresponds to on the global domain; in 1D this is

just a simple linear mapping f : [−1, 1] → [xi−1, xi], where xi−1 and xi are the node coordi-

nates.

The basisFunction method, as discussed in SecƟon 3.2, calculates the basis funcƟon on

the current element for any given degree and derivaƟve. We note that the basis funcƟons

remain on the reference element [−1, 1].

page 29

FEM Algorithms in C++ SecƟon 3

3.4 Linear Solvers

Linear systems arise in various different areas, and are of parƟcular importance computa-

Ɵonally thanks to the methods that exist to approximate soluƟons to the systems. Directly

calculaƟng an inverse to an N × N matrix can take O(N3) operaƟons, so for large linear sys-

tems this could take a very long Ɵme. In pracƟce we don’t need to find the explicit inverse and

can go straight to seeking a soluƟon to the systemprovidedwe have a right-hand-side; however

other computaƟonal algorithms such as Gaussian eliminaƟon also take O(N3) operaƟons [8,

p. 368]. For diagonal systemswe can actually find a soluƟon inO(N)whenwe are dealing with

linear elements for FEMs in 1D, but higher-order FEMs no longer result in diagonal matrices.

We can therefore turn to iteraƟve techniques, which can provide soluƟons to some given

accuracy. For large sparse systems (like the system resulƟng from our FEM calculaƟons) the

conjugate gradient is generally a well-favoured method [8, p. 479]. We have therefore chosen

to use a conjugate gradient solver with some tolerance (usually set to 1× 10−15) for solving all

linear systems that arise and is defined in vector<double>

linearSystems::conjugateGradient(Matrix<double> M, vector<double> b,

double tolerance) . We note that we could also make use of the Thomas algorithm for

solving diagonal systems arising from 1D linear FEM calculaƟons; however we decided that

the performance boost for using a separate algorithm for solving a linear system for perhaps

only the first few iteraƟons was seen as too small to jusƟfy proper implementaƟon. We have

however implemented the Thomas algorithm in void linearSystems::

thomasInvert(vector<double> lower, vector<double> diagonal

vector<double> upper, vector<double> load, vector<double> solution) in case

this wanted to be developed further in the future. The conjugate gradient algorithm is shown

in EquaƟons (3.3), as defined in [6, p. 1605], where we choose d0 = r0 = Ax0 − b. We

note that each xk is our approximaƟon of the soluƟon, and the terminaƟng condiƟon for the
page 30

SecƟon 3 FEM Algorithms in C++

algorithm is when rk · rk is below some given tolerance (usually 1× 10−15).

xk+1 = xk + αkdk (3.3a)

αk = −
rT
kdk

dT
kAdk

(3.3b)

dk+1 = rk+1 + βkdk (3.3c)

βk = −
rT
k+1Adk

dT
kAdk

(3.3d)

We have implemented the conjugate gradient method described above as done in [20], but

we note that we could have computaƟonally implemented a beƩer algorithm: one that per-

mits parallelisaƟon. Computers in recent years have, for one reason or another, been geared to

having more cores than a faster processing clock speed [37]; however the standard conjugate

gradient algorithm is not suitable for thesemulƟ-core processors as each new direcƟon (dk) re-

quires the new residue (rk) to have been calculated [6, p. 1605]. We therefore could have used

the cooperaƟve conjugate gradient method provided by Bhaya et. al to make use of the many

cores and threads in a central processing unit, but for the purposes of this project we will just

use the regular conjugate gradient method as the 1D simulaƟons aren’t too computaƟonally

demanding.

We note that to solve our linear systems abovewe need a Matrix data structure, asmatrices

are not built-in to the programming language — this is due to use cases for matrices widely

differing from programmer-to-programmer. We have therefore implemented our own class

hierarchy to store matrix details relevant to our problems, as shown in Figure 3.4. The Matrix

class is itself abstract, and its descendant classes implement many of its method. We have

implemented a child class called Matrix_full which stores the matrix elements in a single

vector, items, whereby the index at which an element value is stored is calculated relaƟvely

easily from two coordinate values; this is akin to the approach taken by the creator of C++,

page 31

FEM Algorithms in C++ SecƟon 3

Bjarne Stroustrup, in his comprehensive guide to the language [35, p. 831] to minimise storage

required.

Now that we have this generic structure for our matrix classes, it would be relaƟvely easy to

add a sparsematrix data structure, say Matrix_sparse, with amethod like compressed sparse

row format [31, p. 93]. For large sparse matrices, this method aims to reduce the total amount

of storage needed in computer memory.

We also noƟce that the Matrix class and its descendants are implemented generally for a

type, T, using C++’s templates feature. We have chosen to do this for several reasons: firstly,

this allows a single implementaƟon of a matrix for any given type — for example, a matrix of

type double or int; secondly, this approach reduces redundancy of code and allows features

for all types of matrix to be added with relaƟve ease; and thirdly, this approach saves on both

runƟme and space efficiency [35, p. 665].

3.5 Nonlinear Solvers

Later in the report, in SecƟon 5, we introduce a nonlinearmodel problem (rather than a linear

problem). Weneed a nonlinear solver to solve the resulƟng nonlinear system. Although not the

primary concern for this stage in the report, it’s important that we cover the implementaƟon

side of this problem. We have chosen to implement a Newton solver for this solving process,

thanks to its quadraƟc convergence rates close to roots [36, p. 119].

By explicitly calculaƟng the necessary funcƟon and derivaƟve needed for our nonlinear prob-

lem, we use the Newton’smethod in void Solution_nonlinear::Solve_single(double

cgTolerance, vector<double> uPrev, vector<double> uNext, double difference) .

This performs one Newton step, which we can run mulƟple Ɵmes in the void

Solution_nonlinear::Solve(double cgTolerance, double NewtonTolerance,

vector<double> u0) to find a root within a certain specified tolerance.

page 32

SecƟon 3 FEM Algorithms in C++

Matrix «abstract»
[NO DATA]
resize(int noNonZeros) : void
item(int x, int y) : T
+ get_noRows() : int
+ get_noColumns() : int
+ get_diagonal() : vector<T>
+ set(int x, int y, T value) : void

Matrix_full
items : T
noColumns : int
noRows : int
resize(int noNonZeros) : void
get_index(int x, int y) : int
item(int x, int y) : T
+ Matrix_full(int N)
+ Matrix_full(int noColumns, int noRows)
+ Matrix_full(int noColumns, int noRows, T iniƟal)
+ Matrix_full(Matrix M)
+ get_noRows() : int
+ get_noColumns() : int
+ set(int x, int y, T value) : void

Figure 3.4: Class structure for Matrix and its descendants.

3.6 Quadrature

All FEMs will need to (at some point at least) find the value of the one-dimensional definite

integral

I(f) =

∫ b

a

f(x) dx.

We are interested in finding numerical methods that yield accurate approximaƟons to I [12].

We call the numerical approximaƟon to a definite integral a quadrature method, and we will in

parƟcular consider quadratures of the form

In(f) =
n∑

i=1

wif(xi),

where we call wi the quadrature weights and xi the quadrature points for i ∈ [1, n]N.
page 33

FEM Algorithms in C++ SecƟon 3

Gaussian quadrature gives us the best choices of weights and points for approximaƟng the

integraƟon of a funcƟon of one variable numerically on an interval [30]; Gaussian quadrature

can also be derived for integraƟon of funcƟons in more than one dimension (useful in mulƟ-

dimensional FEMs), but we will restrict ourselves to considering one dimension.

We define Gaussian quadrature of order n, n ≥ 1, as done in [33], and more universally

known as Gauss-Legendre quadrature. By taking Ln to mean the nth order Legendre polyno-

mial as defined in [33, p. 22] (c.f. SecƟon 3.2), and noƟcing that Ln has n zeros, we define the

ith Gaussian weights and points given by:

ξn,i s.t. Ln(ξn,i) = 0, (3.4a)

wn,i =
2

(1− ξ2n,i)L′
n(ξ)

2
, i ∈ [1, n]N. (3.4b)

To allow for exact integraƟon of polynomials of a chosen degree, we need to be able to

calculate these points and weights for any given n. Therefore, Blakey FEM implements:

• f_double quadrature::legendrePolynomial(int n, int i) — returns a func-

Ɵon pointer to the ith derivaƟve of the nth-degree Legendre polynomial;

• void quadrature::legendrePolynomialRoots(int n, vector<double> roots)

—populates rootswith the n roots of the nth degree Legendre polynomial by a Newton

method within a residual tolerance of 10−5;

• double quadrature::get_gaussLegendrePoint(int n, int i) —returns the ith

Gaussian point of nth order;

• double quadrature::get_gaussLegendreWeight(int n, int i) — returns the

ith Gaussian weight of nth order.

Since the root finding of the zeros of the Legendre polynomials are relaƟvely expensive, we

also have an intelligent cache built-in to the code so that no point or weight is generated more
page 34

SecƟon 3 FEM Algorithms in C++

than once — when calculated for the first Ɵme they are stored in a dicƟonary data structure.

Whilst this has an immediate computaƟonal penalty with the lookup of various values in the

dicƟonary, it is a much lower cost than compuƟng the points and weights. It is so vital in de-

creasing the runƟme of the program because the roots of these polynomials are found using a

Newton method, which may take a large number of iteraƟons to converge.

3.7 Object-Oriented Design

Figure 3.5 highlights themain class diagram of this implementaƟon, in parƟcular highlighƟng

the structure rather than the specific syntax usage—wehave therefore omiƩed arguments and

their types, as well as const-ness, as these don’t inform the structure of our code too much.

Note that we show inheritance with open triangle-headed arrows, one-to-one associaƟon

with closed triangle-headed arrows, and one-to-many associaƟon with open diamond-headed

arrows (in accordance with industry standards [1]). We denote private members with ’#’, pri-

vate members with ’-’, and public members with ’+’. These access aƩributes give our code

some protecƟon to illegal usage, whereby a user may only interact with our classes with public

members. We also denote abstract methods with italics, and make a note of abstract classes

next to their class name.

To calculate a soluƟon to a problem, the user needs only to instanƟate instances of Mesh and

Solution (with their relevant arguments), and all instances of other classes are created within

these if necessary.

During the creaƟon an instance of Mesh, they can either provide an Elements instance with

various Element s pre-populated, or they may simply provide a number of equally-spaced el-

ements they want in that Mesh. This Mesh can then be then be passed to the Solution con-

structor, with other problem details. To calculate a finite element soluƟon, the user may call

the Solution::Solve method, from which Solution::output_solution() may be called

to output the soluƟon to a data file. This data file can then be used to plot the values of the
page 35

FEM Algorithms in C++ SecƟon 3

finite element soluƟon again the x-axis.

SoluƟon «abstract»
noElements : int
soluƟon : vector<double>
mesh : Mesh*
linear : bool
compute_uh() : double
get_higherOrderDoFs() : vector<double>
+ Solve() : void
+ compute_norm2() : double
+ compute_L2NormDifference2() : double
+ compute_H1NormDifference2() : double
+ compute_EnergyNorm2() : double
+ compute_energyNormDifference2() : double
+ compute_errorIndicator() : double
+ compute_errorIndicators() : vector<double>
+ compute_globalErrorIndicator() : double
+ compute_smoothnessIndicator() : double
+ compute_smoothnessIndicators() : vector<double>
+ get_linear() : bool
+ output_soluƟon() : void
+ output_mesh() : void

SoluƟon_linear
- f : f_double
- epsilon : double
- c : f_double
- a() : double
- l() : double
- compute_residual() : double
+ SoluƟon_linear()
+ SoluƟon_linear()
+ Solve() : void
+ compute_energyNormDifference2() : double
+ compute_errorIndicator() : double
+ get_f() : f_double
+ get_epsilon() : double
+ get_c() : f_double

SoluƟon_nonlinear
- f : f_double2
- f_ : f_double2
- epsilon : double
- a() : double
- l() : double
- compute_residual() : double
- compute_modifiedResidual() : double
+ SoluƟon_nonlinear()
+ SoluƟon_nonlinear()
+ Solve() : void
+ Solve_single() : void
+ compute_energyNormDifference2() : double
+ compute_errorIndicator() : double
+ compute_epsilonNorm() : double
+ get_f() : f_double2
+ get_epsilon() : double
+ get_f_() : f_double2

Mesh
- noElements : int
- noNodes : int
- dimProblem : int
- ownsElements : bool
+ elements : Elements*
+ Mesh()
+ Mesh()
+ get_dimProblem() : int
+ get_noElements() : int
+ get_noNodes() : int

Elements
- noElements : int
- elements : Element**
- nodeCoordinates : vector<double>
- startDoFs : vector<double>
+ Elements()
+ Elements()
+ get_noElements() : int
+ get_elementConnecƟvity() : vector<int>
+ get_elementDoFs() : vector<int>
+ get_nodeCoordinates() : vector<double>
+ get_rawNodeCoordinates() : vector<double>*
+ get_DoF() : int
+ get_polynomialDegrees() : vector<int>
+ calculateDoFs() : void

Element
- elementNo : int
- noNodes : int
- polynomialDegree : int
- nodeIndices : vector<int>
- nodeCoordinates : vector<double>*
- init_element() : void
+ Element()
+ Element()
+ mapLocalToGlobal() : double
+ get_Jacobian() : double
+ basisFuncƟon() : f_double
+ get_elementNo() : int
+ get_noNodes() : int
+ vector<double> get_nodeCoordinates()
+ vector<double>* get_rawNodeCoordinates()
+ vector<int> get_nodeIndices()
+ get_elementQuadrature() : void
+ get_polynomialDegree() : int
+ set_polynomialDegree() : void

Matrix «abstract»
[NO DATA]
resize() : void
item() : T
+ get_noRows() : int
+ get_noColumns() : int
+ get_diagonal() : vector<T>
+ set() : void

Matrix_full
items : T
noColumns : int
noRows : int
resize() : void
get_index() : int
item() : T
+ Matrix_full()
+ get_noRows() : int
+ get_noColumns() : int
+ set() : void

Figure 3.5: The rough object-oriented design of Blakey FEM.

Figure 3.6 outlines the structure of the namespaces used in this implementaƟon, which again

omit the arguments for simplicity. In general, the namespace names correlate to their purpose.

The common namespace holds some methods that are included in every implementaƟon

file; these methods are methods that need to be used frequently across different classes and

namespaces, so it made sense for them to be defined once in their own separate namespace.

Methods concernedwith refinement are defined in the refinement namespace. In general,
page 36

SecƟon 3 FEM Algorithms in C++

onewouldmake a call to eitherrefinement::refinement()orrefinement::refinement_g(),

which respecƟvely describe refinement and global refinement. The choice of refinementmethod

at each step is chosen by the choice of flags in the arguments for these methods. The

refinement::refine_hp(), refinement::refine_h(), andrefinement::refine_p() re-

specƟvely define individual steps of the hp-, h-, and p-adapƟve refinement processes, and will

usually only be called from the former refinement processes. The namespace is structured such

that one of the individual refinement steps will take an old Solution and old Mesh, and give a

new, refined Solution and new, refined Mesh. More of the implementaƟon details for these

processes are given later in Algorithms 4.1–4.4.

The implementaƟons of linearSystems and quadrature are discussed in SecƟons 3.4 and

3.6, respecƟvely.

common
+ addFuncƟon(f_double, f_double) : f_double
+ constantMulƟplyFuncƟon(double, f_double) : f_double
+ l2Norm(vector<double>, vector<double>) : double
+ mulƟplyFuncƟon(f_double, f_double) : f_double

linearSystems
+ thomasInvert() : vector<double>
+ conjugateGradient() : vector<double>
+ dotProduct() : double

quadrature
+ legendrePolynomial() : f_double
+ legendrePolynomialRoot() : double
+ legendrePolynomialRoots() : vector<double>
+ get_gaussLegendrePoint() : double
+ get_gaussLegendreWeight() : double

refinement
+ refinement_g() : void
+ refinement() : void
+ refine_hp() : void
+ refine_h() : void
+ refine_p() : void

Figure 3.6: The namespaces available in Blakey FEM.

We note here that the base class Solution and its descendants, Solution_linear and

Solution_nonlinear, are at the heart of the solving process of the finite element algorithms.

See Appendix A for a more detailed discussion of how these classes use the data to solve the

problems.

3.8 Simple Numerics

Now that we have an implementaƟon of a finite element solver, we may test it with a few

example problems and seewhat resultswehave. Let us first consider a boundary value problem
page 37

FEM Algorithms in C++ SecƟon 3

on Ω = [0, 1], where we seek a soluƟon, u ∈ H1(Ω), such that

−0.001u′′ + u = 1,

where u(0) = u(1) = 0. This fits our model problem from SecƟon 2.2.1 by seƫng ϵ = 0.001,

f ≡ 1, and c ≡ 1.

We first solve some simple examples on this domain for equally-sized linear elements across

the enƟre domain, as shown in Figure 3.7.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u

Boundary Example with 4 Linear Elements

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
u

Boundary Example with 8 Linear Elements

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Boundary Example with 16 Linear Elements

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Boundary Example with 32 Linear Elements

Approximation
Exact

Figure 3.7: Plots for the example boundary layer problem for varying element sizes.

We see that, as the number of elements increases, the soluƟon visibly gets more accurate.

But there is more to this than that: we noƟce that with 8 linear elements, there is an unde-

sirable overshoot in the approximaƟon near the boundaries, but the plateau in the centre of

the domain is already a good approximaƟon of the soluƟon. As we increase the number of

elements we use for the approximaƟon, we are increasing the elements across the plateau for
page 38

SecƟon 3 FEM Algorithms in C++

seemingly no reason. It may be beneficial, for example, to only reduce the size of elements

in areas where the higher resoluƟon is needed. We will see in SecƟon 4 that we can compute

indicators capable of telling us exactly where these regions are, and allow us to get a beƩer

approximaƟon with fewer elements.

We could instead increase the polynomial degree on elements, which could lead to some ex-

ponenƟal convergence rates [18]. We’ve ploƩed quadraƟc and cubic elements for 4 and 8 ele-

ments in Figure 3.8. We note once again that the higher polynomial degrees across the plateau

(where the exact soluƟon is roughly constant) are mostly unnecessary, and beƩer approxima-

Ɵons of the soluƟon mostly come from the higher polynomial degrees near the boundary.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Boundary Example with 4 Quadratic Elements

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u
Boundary Example with 8 Quadratic Elements

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Boundary Example with 4 Cubic Elements

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Boundary Example with 8 Cubic Elements

Approximation
Exact

Figure 3.8: Plots for the example boundary layer problem for varying element sizes and varying polynomial de-
grees.

To try outmore simple examples, youmay visit https://fem.blakey.familywhere a sim-

ple version of Blakey FEM is running, allowing you to compute some of your own soluƟons. In

parƟcular you can try 3 different pre-set examples in the boƩom-leŌ of the page: one that pro-
page 39

https://fem.blakey.family

FEM Algorithms in C++ SecƟon 3

duces the boundary layer soluƟon like above, one that produces a sinusoidal soluƟon, and one

that produces a quadraƟc soluƟon. By varying the number of elements we can see improve-

ments in the soluƟon or deterioraƟons in the soluƟon. A small shortcut allows mixed-sized

element meshes by entering a negaƟve number of elements to the input, which can show in-

teresƟng local convergence properƟes. This will give roughly twice as many elements to the

leŌ-side of the domain as on the right-side. You may also visit the GitHub repository, given on

page 2, to compile and run the code yourself.

page 40

SecƟon 4

A Posteriori Error EsƟmaƟon and AdapƟvity

A priori error bounds only go so far for giving us error esƟmaƟons, as in real-world models

we’re unlikely to know the exact soluƟons. In some situaƟons we may be able to use opƟmal

soluƟons [15], or use a priori error bounds on model paramters [4]. However, for real world

applicaƟons of finite element methods for solving PDEs, it may be that we cannot take reason-

able guesses at the soluƟon. AŌer all, why would we be solving for a soluƟon that we already

know?

In general for an a priori bound, we have a bound of the form

∥u− uh∥ ≤ E1(h, p, u),

where ∥·∥ denotes a suitable norm and the bound, E1, depends upon the element size, h,

the polynomial degree on that element, p, and — crucially — the actual soluƟon, u. It would

be far beƩer to derive computable error bounds that depend instead upon the finite element

approximaƟonof the soluƟon, uh, so thatwe can calculate the boundevenwhenwedon’t know

the exact soluƟon. We will introduce such bounds in this secƟon, referred to as a posteriori

error bounds, which take the form

∥u− uh∥ ≤ E2(h, p, uh),

and therefore depend on our numerical approximaƟon, uh.

FEM Algorithms in C++ SecƟon 4

4.1 A Posteriori Error EsƟmaƟon in 1D

When numerically solving real-life problems (such as computaƟonal fluid dynamics, elasƟc-

ity, or weather predicƟon problems) we may find that the overall accuracy of the numerical

approximaƟon is degraded by local singulariƟes; a remedy to this problem is to locally refine

around areas where the approximate and analyƟcal soluƟon differ the most [39]. When work-

ing with test problems (e.g. −u′′(x) = sin(x)) we know the analyƟcal soluƟon and can there-

fore immediately seewhere these areas are; however, inmost pracƟcal situaƟons the analyƟcal

soluƟon is not known and we can’t do this.

For finite element methods, there exist a posteriori error esƟmates (error esƟmates without

knowing the analyƟcal soluƟon). We will derive such an error esƟmate for our model problem

in EquaƟon (2.4) in this secƟon, mostly following the results from Schwab [32] as a guide.

We firstly define the energy norm, which is the norm in which we will measure our error and

error esƟmates.

DefiniƟon 4.1 (Energy norm, [25, p. 55]).

The energy norm is defined as

∥u∥E := a(u, u),

where a is the usual bilinear funcƟonal from our FEM.

In 1D, we may consider domain Ω := (a, b) and finite element space

Vh := {u ∈ H1(Ω) : u|(xi−1,xi) ∈ PPi
(xi−1, xi)∀i ∈ [1, N]N}.

We ulƟmately want to prove that there exists an a posteriori bound on ∥u− uh∥E , but we first

need to prove some preliminary results.

Let Ω̂ := [−1, 1] be the one-dimensional reference element. Thenwe knowby [32, eq. 3.3.3]
page 42

SecƟon 4 FEM Algorithms in C++

that, for any u ∈ L2(Ω̂), we may write u in the form of an expansion of Legendre polynomials:

u(ξ) =
∞∑
i=0

aiLi(ξ), (4.1)

where

ai =
2i+ 1

2

∫ 1

−1

u(ξ)Li(ξ) dξ,

and {Li}∞i=0 are the family of Legendre polynomials, as defined in SecƟon 3.2. We note that

the Legendre polynomials saƟsfy

∫ 1

−1

Li(ξ)Lj(ξ) dξ =
2

2i+ 1
δij, (4.2)

where δij denotes the Kronecker delta.

Wemay employ EquaƟon (4.2), noƟng EquaƟon (4.1), to deduce the following Parseval iden-

Ɵty, as stated in a similar form by Schwab [32, eq. 3.3.14]:

∥u∥2L2(Ω̂) =
∞∑
i=1

2

2i+ 1
|ai|2. (4.2*)

More generally, the following lemma holds.

Lemma 4.1 ([32, lem. 3.10]).

Given u ∈ Hk(Ω̂), k ≥ 0, defined by EquaƟon (4.1), then the following (generalised) Parseval

idenƟty holds: ∫ 1

−1

|u(k)(ξ)|2(1− ξ2)k dξ =
∞∑
i=k

|ai|2
2

2i+ 1

(i+ k)!

(i− k)!
.

Proof. Firstly, we show that the following relaƟon holds:

∫ 1

−1

(1− ξ2)kL(k)
i (ξ)L

(k)
j (ξ) dξ =

2

2i+ 1

(i+ k)!

(i− k)!
δij. (4.3)

To prove EquaƟon (4.3) we first note that Legendre polynomials are a special case of the
page 43

FEM Algorithms in C++ SecƟon 4

Jacobi polynomials

{Pi(ξ;α, β)}∞i=0

cf. [38, p. 58]. In parƟcular the Jacobi polynomials saƟsfy the orthogonality property:

∫ 1

−1

(1− ξ)α(1 + ξ)βPi(ξ;α, β)Pj(ξ;α, β) dξ

=
2α+β+1

2i+ 1 + α + β

Γ(α + 1 + i)Γ(β + 1 + i)

Γ(i+ 1)Γ(α + β + 1 + i)
δij;α, β > −1,

(4.4)

where Γ(·) denotes the gamma funcƟon.

Moreover, we note that

L
(k)
i (ξ) =

(i+ k)!

2ki!
Pi−k(ξ; k, k), k ≥ i. (4.5)

Hence, using both EquaƟon (4.4) and (4.5) gives

∫ 1

−1

(1− ξ2)kL(k)
i (ξ)L

(k)
j (ξ) dξ

=

∫ 1

−1

(1− ξ)(k)(1 + ξ)(k)
(i+ k)!

2ki!

(j + k)!

2kj!
Pi−k(ξ; k, k)Pj−k(ξ; k, k) dξ

=
[(i+ k)!]2

22k[i!]2
22k+1

2i+ 1

Γ(i+ 1)Γ(i+ 1)

Γ(i− k + 1)Γ(i+ k + 1)
δij

=
[(i+ k)!]2

22k[i!]2
22k+1

2i+ 1

i!

(i− k)!
i!

(i+ k)!
δij

=
2

2i+ 1

(i+ k)!

(i− k)!
δij,

hence, we deduce that EquaƟon (4.3) holds.

page 44

SecƟon 4 FEM Algorithms in C++

To complete the proof of the lemma, we note that

∫ 1

−1

(1− ξ2)k|u(k)(ξ)|2 dξ

=

∫ 1

−1

(1− ξ2)k|
∞∑
i=1

aiL
(k)
i (ξ)|2 dξ

=
∞∑

i,j=k

aiaj

∫ 1

−1

(1− ξ2)kL(k)
i (ξ)L

(k)
j (ξ) dξ

=
∞∑
i=k

2

2i+ 1

(i+ k)!

(i− k)!
|ai|2,

where we have employed EquaƟon (4.3).

With these results, we now consider the construcƟon of a suitable projector πh : L2(Ω̂) →

PP (Ω̂), where PP (Ω̂) denotes the space of polynomials of degree less or equal to P , P ≥ 0.

To this end, we state the following result.

Lemma 4.2 ([32, eq. 3.3.14]).

For every u ∈ L2(Ω̂) we have that

inf
v∈PP (Ω̂)

∥u− v∥L2(Ω̂) =

[
∞∑

i=p+1

2

2i+ 1
|ai|2

] 1
2

.

Proof. Let v ∈ PP (Ω̂) be any polynomial of degree P , P ≥ 0, then

v(ξ) =
P∑
i=0

biLi(ξ)

for a given set of coefficients {bi}Pi=0. Then employing EquaƟon (4.2*) gives

∥u− v∥2L2(Ω̂) =
P∑
i=0

2

2i+ 1
|ai − bi|2 +

∞∑
i=P+1

2

2i+ 1
|ai|2.

Hence ∥u− v∥L2(Ω̂) will be minimised when bi = ai for i ∈ [1, P]N, and we have our result.
page 45

FEM Algorithms in C++ SecƟon 4

Remark 4.1.

As we would expect, the funcƟon v ∈ PP (Ω̂), which minimises the norm ∥u− v∥L2(Ω̂) is in fact

the L2(Ω̂)-projecƟon of u onto PP (Ω̂).

Based on previous results, we may derive an approximaƟon result. However, we first, for

j ∈ [0, k]N, k ∈ N, define

V k
j (Ω̂) := {u ∈ L2(Ω̂) : |u|V k

j (Ω̂) <∞},

where

|u|2V k
j (Ω̂) ≡

k∑
i=j

∫ 1

−1

(1− ξ2)i|u(i)(ξ)|2 dξ,

akin to [32, eq. 3.3.10].

Note that for j = 0, | · |V k
j (Ω̂) is a norm, but only a semi-norm for j > 0.

Theorem 4.1 (Similar to [32, th. 3.11]).

Given u ∈ V k
0 (Ω̂), k ≥ 1, the following approximaƟon result holds

inf
v∈PP (Ω̂)∥u−v∥2

L2(Ω̂)

≤
[
(P + 1− s)!
(P + 1 + s)!

] 1
2

|u|2V s
s (Ω̂) ,

for s ∈ [0,min(P + 1, k)]N.

Proof. Employing Lemma 4.2 gives

inf
v∈PP (Ω̂)

∥u− v∥2L2(Ω̂) =
∞∑

i=P+1

2

2i+ 1
|ai|2

=
∞∑

i=P+1

2

2i+ 1
|ai|2

(i+ s)!

(i− s)!
(i− s)!
(i+ s)!

≤ (P + 1− s)!
(P + 1 + s)!

∞∑
i=P+1

2

2i+ 1

(i− s)!
(i+ s)!

=
(P + 1− s)!
(P + 1 + s)!

|u|2V s
s (Ω̂) ,

page 46

SecƟon 4 FEM Algorithms in C++

by Lemma 4.1, as required.

For the purposes of the a posteriori error esƟmaƟon, we require an alternaƟve approxima-

Ɵon result, which we will now develop in a similar way.

Theorem 4.2 ([32, th. 3.14]).

Given u ∈ H1(Ω̂) there exists πhu ∈ PP (Ω̂) such that the following hold:

πhu(±1) = u(±1), (4.6a)

∥u′ − (πhu)
′∥2L2(Ω̂) =

∞∑
i=P

2

2i+ 1
|bi|2, (4.6b)

∥u− πhu∥2L2(Ω̂) ≤
∫ 1

−1

(u− πhu)2

1− ξ2
dξ =

∞∑
i=P

2

i(i+ 1)(2i+ 1)
|bi|2. (4.6c)

Here, {bi}∞i=0 are the Legendre coefficients of u′, i.e.,

bi =
2i+ 1

2

∫ 1

−1

u′(ξ)Li(ξ) dξ, i ∈ N.

Proof. (4.6a) Firstly, we write (πhu)′ to be the truncated Legendre series expansion of u′, i.e.,

(πhu)
′ =

P−1∑
i=0

biLi(ξ),

and define

πhu(ξ) =

∫ ξ

−1

(πhu)
′(η) dη + u(−1).

Hence, by definiƟon of πhu(−1) = u(−1).
page 47

FEM Algorithms in C++ SecƟon 4

Moreover,

πhu(1) =

∫ 1

−1

(πhu)
′(η) dη + u(−1)

= 2bi + u(−1)

= 2biπhu(−1)

Hence,

πhu(1)− πhu(−1) = 2b0.

Similarly,

u(1)− u(−1) =
∫ 1

−1

u′(ξ) dξ

=

∫ 1

−1

∞∑
i=0

biLi(ξ) dξ

= 2b0.

Thereby, given that πhu(−1) = u(−1), we deduce that πhu(1) = u(1), and hence EquaƟon

(4.6a) holds.

(4.6b) This follows immediately with Lemma 4.1.

(4.6c) First consider the following, where we have applied EquaƟon (4.6a):

u(ξ)− πhu(ξ) =
∫ ξ

−1

u′(η) dη −
∫ ξ

−1

(πhu)
′(η) dη

=

∫ ξ

−1

∞∑
i=P

biLi(η) dη

=
∞∑
i=P

biψi(ξ), (4.7)

where ψi(ξ) =
∫ ξ

−1
Li(η) dη, i ∈ [p,∞)N.

page 48

SecƟon 4 FEM Algorithms in C++

We recall that the Legendre polynomials saƟsfy the ODE problem:

((1− ξ2)L′
i(ξ))

′ + i(i+ 1)Li(ξ) = 0, in Ω̂,

for i ∈ N, by [38, th. 4.2.1].

Rearranging gives

Li = −
((1− ξ2)L′

i)
′

i(i+ 1)
, i ≥ 1,

and integraƟng gives

ψ(ξ) ≡
∫ ξ

−1

Li(η) dη

= − 1

i(i+ 1)

∫ ξ

−1

((1− η2)L′
i(η))

′ dη

= − 1

i(i+ 1)
(1− ξ2)L′

i(ξ).

Hence,

∫ 1

−1

1

1− ξ2
ψi(ξ)ψj(ξ) dξ =

∫ 1

−1

1

i(i+ 1)

1

j(j + 1)
(1− ξ2)L′

i(ξ)L
′
j(ξ) dξ

=
1

[i(i+ 1)]2
2

2i+ 1

(i+ 1)!

(i− 1)!
δij

=
2

2i+ 1

1

i2(i+ 1)2
(i+ 1)i(i− 1)!

(i− 1)!
δij

=
2

i(i+ 1)(2i+ 1)
δij. (4.8)

Employing EquaƟons (4.7) and (4.8) gives

∫ 1

−1

|u(ξ)− πhu(ξ)|2 dξ ≤
∫ 1

−1

1

1− ξ2
|u(ξ)− πhu(ξ)|2 dξ

=

∫ 1

−1

(
∞∑
i=P

biψi(ξ)

)2

dξ

=
∞∑
i=P

2

i(i+ 1)(2i+ 1)
|bi|2,

page 49

FEM Algorithms in C++ SecƟon 4

as required.

From Theorem 4.6, we now derive the following approximaƟon result.

Corollary 4.1 ([32, co. 3.15]).

Let u ∈ H1(Ω̂) ∩ V k
0 (Ω̂), k ≥ 1. Then the following bound holds:

∥u′ − (πhu)
′∥L2(Ω̂) ≤

[
(p− s)!
(p+ s)!

] 1
2

|u′|V s
s (Ω̂) ,

where s ∈ [0,min(P, k)]N.

Proof. From EquaƟon (4.6b) from Theorem 4.2, together with the proof of Theorem 4.1, gives

∥u′ − (πhu)
′∥2L2(Ω̂) =

∞∑
i=P

2

2i+ 1
|bi|2

=
∞∑
i=P

2

2i+ 1

(i+ s)!

(i− s)!
(i− s)!
(i+ s)!

|bi|2

≤ (P − s)!
(P + s)!

∞∑
i=P

2

2i+ 1

(i+ s)!

(i− s)!
|bi|2

=
(P − s)!
(P + s)!

|u′|2V s
s (Ω̂) ,

as required.

For the purposes of the proceeding a posteriori error analysis we consider a parƟcular case

of Theorem 4.2, applied to an individual element, κi = [xi−1, xi], i ∈ [1, N]N. To this end,

consider the following element mapping:

Fκi
:[−1, 1]→ [xi−1, xi];

Fκi
(ξ) ≡ x =

1

2
(1− ξ)xi−1 +

1

2
(1 + ξ)xi.

Note the slight change of notaƟon, where we can write

û(ξ) = u ◦ F (ξ).
page 50

SecƟon 4 FEM Algorithms in C++

Wemay now introduce the following theorem as the linear approximaƟon result that wewill

use.

Theorem 4.3 (1D linear approximaƟon result, [32, p. 145]).

If u ∈ H1(κi), i ∈ [1, n]N, and πhu(xi) = u(xi) for i ∈ [0, n]N, then Πhu ∈ Vh s.t.

∫ xi

xi−1

w−1
i (u− πhu)2dx ≤

1

Pi(Pi + 1)
∥u′∥2L2(κi)

,

where wi = (xi − x)(x− xi−1).

Proof. From EquaƟon (4.6c) from Theorem 4.2, we have

∫ 1

−1

(û− πhû)2

1− ξ2
dξ =

∞∑
i=P

2

i(i+ 1)(2i+ 1)
|bi|2

=
∞∑
i=P

2

i(i+ 1)(2i+ 1)

(i− s)!
(i− s)!

(i+ s)!

(i+ s)!
|bi|2

≤ (P − s)!
(P + s)!

1

P (P + 1)

∞∑
i=P

2

2i+ 1

(i+ s)!

(i− s)!
|bi|2.

Employing Lemma 4.1 gives

∫ 1

−1

(û− πhû)2

1− ξ2
dξ ≤ (P − s)!

(P + s)!

1

P (P + 1)

∫ 1

−1

|û(s+1)|2(1− ξ2)s dξ.

In order to scale from the reference element on Ω̂ to κi (on [xi−1, xi]), we first note that

dx
dξ

=
1

2
(xi − xi−1)

and hence
1

1− ξ2

(
dx
dξ

)−2

=
1

wi

.

To see this, we note that

ξ =
2x− (xi + xi−1)

xi − xi−1

page 51

FEM Algorithms in C++ SecƟon 4

and therefore

1− ξ2 = 1− (2x− (xi + xi−1))
2

(xi − xi−1)2

=
(xi − xi−1)

2 − (2x− (xi + xi−1))
2

(xi − xi−1)2

=
4(xi − x)(x− xi−1)

(xi − xi−1)2
.

We may now set s = 0, which gives

∫ xi

xi−1

w−1
i (u− πhu)2 dx =

∫ 1

−1

(û− πhû)2w−1
i

dx
dξ

dξ

=

∫ 1

−1

1

1− ξ2
(û− πhû)2

[
dx
dξ

]−1

dξ

≤ 1

P (P + 1)

[
dx
dξ

]−1 ∫ 1

−1

(û′)2 dξ.

Now

u′ ≡ ux

= ûξ

[
dx
dξ

]−1

≡ û′
[
dx
dξ

]−1

.

Thus,

∫ xi

xi−1

w−1
i (u− πhu)2 dx ≤

1

P (P + 1)

[
dx
dξ

]−1 ∫ xi

xi−1

(u′)2
[
dx
dξ

]2 dξ
dx

dx

=
1

P (P + 1)
∥u′∥2L2(xi−1,xi)

,

and noƟng κi = [xi−1, xi] we are done.

page 52

SecƟon 4 FEM Algorithms in C++

For the following theorem’s proof we also make note of the Galerkin orthogonality property,

as stated in [25][eq. 1.35].

a(u− uh, vh) = 0,∀vh ∈ Vh. (4.9)

We also make the following definiƟon of the residual.

DefiniƟon 4.2 (Residual).

For one-dimensional version of themodel problemgiven in EquaƟon (2.4), we have the residual:

R(u)|(xi−1,xi)
:= f + ϵu′′ − cu, i ∈ [1, n]N.

We will now state and prove the main theorem providing an a posteriori error bound.

Theorem 4.4 (1D a posteriori error bound).

If u ∈ H1(Ω) and u saƟsfies EquaƟon (2.4), then

∥u− uh∥E ≤

√√√√ N∑
i=1

1

Pi(Pi + 1)

1

ϵ

∥∥∥w1/2
i R(uh)

∥∥∥2
L2(xi−1,xi)

,

where ∥·∥E denotes the energy norm, Pi is the element’s polynomial degree,wi is defined as

in Theorem 4.3, and uh is our approximaƟon of the soluƟon defined in EquaƟon (2.6).

Proof. We note that EquaƟon (2.4) tells us that

−ϵu′′(x) + c(x)u(x) = f(x), x ∈ (0, 1)

with u(0) = u(1) = 0.
page 53

FEM Algorithms in C++ SecƟon 4

The problem’s weak formulaƟon is, as wriƩen in EquaƟon (5.2), find u ∈ H1
0 (0, 1) s.t.

a(u, v) = l(v), ∀v ∈ H1
0 (0, 1),

ProjecƟng our problem to the finite-dimensional space, as shown in EquaƟon (2.6), we have

to find uh ∈ Vh s.t.

a(uh, vh) = l(vh)∀vh ∈ Vh.

By working from the definiƟon of the energy norm, we get:

∥u− uh∥2E = a(u− uh, u− uh).

By defining e := u − uh and using Galerkin orthogonality (EquaƟon (4.9)) in the second

argument, we get

∥u− uh∥2E = a(u− uh, e)

= a(u− uh, e− πhe).

By linearity we may split up the terms in the first argument to give

∥u− uh∥2E = a(u, e− πhe)− a(uh, e− πhe).

We now subsƟtute the model equaƟon (EquaƟon (2.4)) into the first term to give

page 54

SecƟon 4 FEM Algorithms in C++

∥u− uh∥2E = l(e− πhe)− a(uh, e− πhe)

=

∫ 1

0

[f(e− πhe)− ϵu′h(e− πhe)′ − cuh(e− πhe)] dx.

Applying integraƟon by parts elementwise and noƟng the vanishing boundary condiƟons by

Theorem 4.3 gives

∥u− uh∥2E =
N∑
i=1

∫ xi

xi−1

[f(e− πhe) + ϵu′′h(e− πhe)− cuh(e− πhe) dξ]

=
N∑
i=1

∫ xi

xi−1

(f + ϵu′′h − cuh)(e− πhe) dξ.

By using the definiƟon of the residual in EquaƟon (4.2), we have

∥u− uh∥2E =
N∑
i=1

∫ xi

xi−1

(R(uh))(e− πhe)dx

=
N∑
i=1

∫ xi

xi−1

w
1/2
i (R(uh))w

−1/2
i (e− πhe)dx,

where wi := (xi − x)(x− xi−1).

Using the Cauchy-Schwarz inequality gives

page 55

FEM Algorithms in C++ SecƟon 4

∥u− uh∥2E ≤
N∑
i=1

√∫ xi

xi−1

wi(R(uh))2dx

√∫ xi

xi−1

w−1
i (e− πhe)2dx

=
N∑
i=1

∥∥∥w1/2
i R(uh)

∥∥∥
L2
(xi−1,xi)

√∫ xi

xi−1

w−1
i (e− πhe)2dx.

Applying our error bound in Theorem 4.3 we have

∥u− uh∥2E ≤
N∑
i=1

∥∥∥w1/2
i R(uh)

∥∥∥
L2
(xi−1,xi)

√
1

Pi(Pi + 1)
∥e′∥2L2(xi−1,xi)

=
N∑
i=1

∥∥∥w1/2
i R(uh)

∥∥∥
L2
(xi−1,xi)

√
1

ϵPi(Pi + 1)
∥ϵ1/2e′∥2L2(xi−1,xi)

=
N∑
i=1

∥∥∥w1/2
i R(uh)

∥∥∥
L2
(xi−1,xi)

∥∥ϵ1/2e′∥∥
L2(xi−1,xi)

√
1

ϵPi(Pi + 1)
.

Applying the Cauchy-Schwarz inequality, we have

∥u− uh∥2E ≤

√√√√ N∑
i=1

∥ϵ1/2e′∥2L2
(xi−1,xi)

√√√√ N∑
i=1

1

ϵpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥2
L2
(xi−1,xi)

.

=
∥∥ϵ1/2e′∥∥

L2(0,1)

√√√√ N∑
i=1

1

ϵpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥2
L2
(xi−1,xi)

.

NoƟcing that ∥e∥2E ≡
∥∥ϵ1/2e′∥∥2

L2(0,1)
+
∥∥c1/2e∥∥2

L2(0,1)
≥
∥∥ϵ1/2e′∥∥2

L2(0,1)
, we have

page 56

SecƟon 4 FEM Algorithms in C++

∥u− uh∥2E ≤ ∥e∥E

√√√√ N∑
i=1

1

ϵpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥2
L2
(xi−1,xi)

= ∥u− uh∥E

√√√√ N∑
i=1

1

ϵpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥2
L2
(xi−1,xi)

By dividing through by the norm of the error in the energy norm, we further simplify to

∥u− uh∥E ≤

√√√√ N∑
i=1

1

ϵpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥2
L2
(xi−1,xi)

,

which gives the desired result.

Since each term in the sum is dependant only on the properƟes of a single element, say κi,

we also make the further definiƟon of

ηκi
:=

1√
ϵpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥
L2
(xi−1,xi)

as the element or local error indicator so that we can further write

∥u− uh∥E ≤

√√√√ N∑
i=1

η2κi
.

page 57

FEM Algorithms in C++ SecƟon 4

We will then write this upper bound as

E(uh, h, p) :=

√√√√ N∑
i=1

η2κi

which will be referred to as the global error indicator.

4.2 Example Problems

We introduce here some model problems that will be used for numerical experiments with

the h-, p-, and hp-adapƟve algorithms in SecƟons 4.3–4.5.

Problem 4.1.

A sinusoidal example, for which the soluƟon the soluƟon is very smooth. The problem has the

exact soluƟon

u(x) = sin(2πx).

The data is set on EquaƟon (2.4a) as ϵ = 1, f = 4π2 sin(2πx), and c ≡ 0.

Problem 4.2.

A boundary layer problem, exhibiƟng boundaries near x = 0 and x = 1, as given in [42, ex. 2]

with the exact soluƟon

u(x) = − exp(x/
√
ϵ)

exp(1/
√
ϵ) + 1

− exp(−x/
√
ϵ) exp(1/

√
ϵ)

exp(1/
√
ϵ) + 1

+ 1.

The data is set on EquaƟon (2.4a) as ϵ = 10−3, f ≡ 1, and c ≡ 1.

Problem 4.3.

A problem exhibiƟng a shock, as given in [42, ex. 4] with the exact soluƟon

u(x) = arctan(100(x− 1/3)) + (1− x) arctan(100/3)− x arctan(200/3).
page 58

SecƟon 4 FEM Algorithms in C++

The data is set on EquaƟon (2.4a) as ϵ = 1, f = 4×106(x−1/3)
(105(x−1/3)2+1)2

, and c ≡ 1. Again, we note

that f is just−u′′ + u.

4.3 h-adapƟvity

This secƟon will be dedicated to looking at strategies to adapƟvely change the mesh locally

in order to reduce the energy norm error of the soluƟon.

We need an algorithm that will instruct us on howwewill construct successivemeshes, each

more refined than the previous. We will use a modified version of the algorithm described in

[39, p .68] by Verfürth, which is given in Algorithm 4.1; this algorithm has τ kh as the kth mesh,

ukh as the finite element soluƟon on τ kh , and ηκ as the individual element indicators and E as

the global error indicator, c.f. the end of SecƟon 4.1. The underline on the word ”refine” is

because we need to do something further — how do we deem elements as big contributors to

the global error, and then how do we construct the subsequent refinement to the mesh and

soluƟon?

Algorithm 4.1: Refinement
Create iniƟal mesh, τ 0h ;
Compute iniƟal soluƟon, u0h;
Compute all ηκ and E ;
k ← 0;
while E ≥ TOL do

Refine mesh and soluƟon, giving τ k+1
h and uk+1

h ;
Solve ukh on τ kh ;
Compute all ηκ and E ;
k ← k + 1

For h-refinement, as described in [5, p. 748] and [41, p. 772], our aim is to make the error

uniform across all elements. By the strategy outlined in [23, p. 18] we will choose to refine all

those elements with local error indicators that are greater or equal to one third of the largest

local error indicator. Algorithm 4.2 outlines how we have implemented this, where the algo-

rithm takes the current mesh, current soluƟon, and error indicators for all elements as inputs;

and then returns a refined mesh and soluƟon.
page 59

FEM Algorithms in C++ SecƟon 4

Algorithm 4.2: h-refinement
Input : τh, uh,ηκ

Output: τ newh , unewh

forall κ do
if ηκ ≥ maxηκ/3 then

Split element in half and add both these elements to τ newh

else
Copy element from τh to τ newh

4.3.1 Test Problem 1

For Problem 4.1, we may apply the above algorithms adapƟvely refine the mesh to provide

more accurate soluƟons.

By iniƟalising τ0 to have 4 linear elements, and allowing the algorithm to run, we get the

results shown in Figure 4.1 for the first 3 h-adapƟve steps.

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u

Test Problem 1 with 0 h-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u

Test Problem 1 with 1 h-Adaptive Step

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u

Test Problem 1 with 2 h-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u

Test Problem 1 with 3 h-Adaptive Steps

Approximation
Exact

Figure 4.1: h-adapƟvity on Problem 4.1.

page 60

SecƟon 4 FEM Algorithms in C++

We see that the iniƟal mesh with four linear elements is not very good at approximaƟng

the exact soluƟon (and in fact ∥u− uh∥E ≈ 1.93 here). The first step of the refinement algo-

rithm automaƟcallymarks all elements for refinement, resulƟng in ameshwith eight elements,

which is again a beƩer approximaƟon of the exact soluƟon. Figure 4.2 shows both the energy

norm between the exact and approximate soluƟons (∥u− uh∥E) as well as the error indicator

(E(uh, h, p)) against the degrees of freedom for the first 15 h-refinement steps. We can see

that the error is reducing at some polynomial rate— and is importantly staying under the error

esƟmator, since it is an upper bound.

101 102 103

DoF

10 2

10 1

100

er
ro

r

Test Problem 1 h-Adaptive Error

Energy error
Error estimator

Figure 4.2: h-adapƟvity convergence rates on Problem 4.1.

This means that refinement is working at reducing the error, but how does the efficiency of

this compare to global refinement? We can see in Figure 4.3 that the h-adapƟve version, as

well as taking more steps, performs very slightly beƩer. It may seem at this point that there

is no real advantage to h-adapƟvity, but we will see in SecƟon 4.4 that this parƟcular problem

performs significantly beƩer with p-adapƟvity.
page 61

FEM Algorithms in C++ SecƟon 4

101 102

DoF

10 2

10 1

100

er
ro

r
Test Problem 1 with Local and Global h-Refinement Error

Energy error (local)
Error estimator (local)
Energy error (global)
Error estimator (global)

Figure 4.3: h-adapƟvity (local refinement) and global h-refinement convergence rates on Problem 4.1.

We note that for this problem we can calculate the efficiency indices of our error bounds

with

Θ =
E(uh, h, p)
∥u− uh∥E

,

which gives us an indicaƟon of how close our error esƟmate is compared to the actual error

in the soluƟon. Note that we can only calculate this quanƟty here because we know the exact

soluƟon. The first ten steps of theh-adapƟve algorithmproduce the results in Table 4.1. We see

that the error esƟmator is iniƟally about 4% inefficient for the iniƟal condiƟon of 4 elements,

but this decreases down to 0.1% inefficiency by the Ɵme that the algorithm has split the mesh

into 280 elements. Thismeans that our bound for this problem is very Ɵght andwe aren’t doing

too many unnecessary refinements.

page 62

SecƟon 4 FEM Algorithms in C++

N Θ
4 1.042
8 1.010
12 1.024
24 1.006
36 1.007
52 1.001
88 1.002
108 1.002
196 1.001
280 1.001

Table 4.1

4.3.2 Test Problem 2

Recall that Problem 4.2 is a boundary layer problem, exhibiƟng boundaries near x = 0 and

x = 1, with the exact soluƟon

u(x) = − exp(x/
√
ϵ)

exp(1/
√
ϵ) + 1

− exp(−x/
√
ϵ) exp(1/

√
ϵ)

exp(1/
√
ϵ) + 1

+ 1,

where ϵ = 10−3.

We iniƟalise the h-adapƟve algorithm with a mesh of 4 linear elements, and get the results

in Figure 4.4 aŌer 3 h-adapƟve steps.

We see that the iniƟal mesh is very bad at approximaƟng the soluƟon: the approximate

soluƟon does not capture the plateau through the centre of the domain, it does not capture

the sharp derivaƟve near the boundaries, and there is an erroneous overshoot in the soluƟon’s

maximum value. However, by 2 and 3 refinement steps we see the features of the true soluƟon

becoming apparent in the approximate soluƟon.

We noƟce that, unlike Problem 4.1, that the h-adapƟve algorithm produces very different

results to global refinement. Figure 4.5 shows, for the same iniƟal condiƟon, global refinement

having a much higher error for the same number of degrees of freedom. InteresƟngly, we see

some very high convergence rates for local refinement when the algorithm is starƟng. This is
page 63

FEM Algorithms in C++ SecƟon 4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
Test Problem 2 with 0 h-Adaptive Step

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Test Problem 2 with 1 h-Adaptive Step

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Test Problem 2 with 2 h-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Test Problem 2 with 3 h-Adaptive Steps

Approximation
Exact

Figure 4.4: h-adapƟvity on Problem 4.2.

likely to be because this is the stage at which the boundaries are resolved in the approximaƟon,

and we therefore get much closer to the soluƟon. When solving these numerical experiments,

the generaƟon of the global refinement data used significantly more computaƟonal resources

on my computer than the local adapƟvity data, and this is directly due to the larger number

of degrees of freedom. We note that there were roughly four Ɵmes the number of degrees of

freedom involved in reducing the error in the global refinement to roughly the same amount

of error in the local adapƟvity.

We may plot the mesh from the h-adapƟvity for the first 14 refinement steps to give us an

idea of how the elements have been marked for refinement, given in Figure 4.6. As one may

expect, with having errors iniƟally high near the boundary, the mesh has been mostly refined

near the boundaries.

Also note that we could have performed similar analysis to those above without the exact
page 64

SecƟon 4 FEM Algorithms in C++

101 102 103

DoF

10 3

10 2

10 1

100

er
ro

r
Test Problem 2 with Local and Global h-Refinement Error

Energy error (local)
Error estimator (local)
Energy error (global)
Error estimator (global)

Figure 4.5: h-adapƟvity (local refinement) and global h-refinement convergence rates on Problem 4.2.

soluƟons to the equaƟons; however it is sƟll very useful to have this for these test problems,

as we can make further comparisons between the actual error and the esƟmate error.

4.3.3 Test Problem 3

Recall that Problem 4.3 is a problem exhibiƟng a shock with the exact soluƟon

u(x) = arctan(100(x− 1/3)) + (1− x) arctan(100/3)− x arctan(200/3).

As a change to the previous examples, we set the iniƟal mesh for this problem to have 6

linear elements; this is because 4 elements don’t yield desirable results for some of the adap-

Ɵvity algorithms due to a lack of resoluƟon over the shock. The first 3 steps of the h-adapƟve
page 65

FEM Algorithms in C++ SecƟon 4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

p
Problem 2 Mesh After 6 h-Adaptive Steps

Figure 4.6: ResulƟng h-adapƟvity mesh for Problem 4.2.

algorithm are shown in Figure 4.7.

The iniƟal mesh produces a soluƟon that roughly describes the true soluƟon near the bound-

aries, but doesn’t do a very good job at approximaƟng the true soluƟon in the middle of the

domain. Adding to this observaƟon, we see that the derivaƟve across the shock points becomes

steeper between adapƟve steps, unƟl the steepness is roughly met by the third step. By this

third step we have most of the features that we would expect to see in a good approximaƟon

of the soluƟon.

As shown in Figure 4.8 we very clearly see that the mesh has righƞully been refined around

the shock region, allowing the soluƟon to become much more accurate. Because the mesh

is so fine, our plot does not really show how fine the mesh goes at its finest, but we see the

important feature that the element sizes are certainly smaller in this region.
page 66

SecƟon 4 FEM Algorithms in C++

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

1.0

1.5

2.0

u

Test Problem 3 with 0 h-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

1.0

1.5

2.0

u

Test Problem 3 with 1 h-Adaptive Step

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

1.0

1.5

u

Test Problem 3 with 2 h-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

1.0

1.5

u

Test Problem 3 with 3 h-Adaptive Steps

Approximation
Exact

Figure 4.7: h-adapƟvity on Problem 4.3.

4.4 p-adapƟvity

Here, just like with h-adapƟvity, we again choose to mark elements for refinement for those

elements that have local error indicators greater or equal to one third of the largest local error

indicator. However we now refine elements by increasing the polynomial on elements marked

for refinement, rather than spliƫng them into two new elements. This procedure is outlined

in Algorithm 4.3.

Algorithm 4.3: p-refinement
Input : τh, uh,ηκ

Output: τ newh , unewh

forall κ do
if ηκ ≥ maxηκ/3 then

Increase polynomial degree on element;

This is somewhat of an easier algorithm to implement computaƟonally as the number of
page 67

FEM Algorithms in C++ SecƟon 4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

p
Problem 3 Mesh After 15 h-Adaptive Steps

Figure 4.8: ResulƟng h-adapƟvity mesh for Problem 4.3.

elements between subsequent iteraƟons remains the same.

We note that, as described in [18], we can get exponenƟally converging soluƟons for solu-

Ɵons that are very smooth (soluƟons lie in Cp for some large p). This is very good news for our

convergence rates: this means that, for sufficiently smooth funcƟons, we will converge to the

soluƟon extremely quickly. This idea will be further developed in SecƟon 4.5, where we will

combine this extraordinarily useful feature with mesh refinement.

4.4.1 Test Problem 1

For Problem 4.1 we again choose an iniƟal mesh with 4 linear elements.

Immediately we can see in Figure 4.9 that the soluƟon, aŌer one p-adapƟve step, is very

close to the exact soluƟon. As we will see in SecƟon 4.5 this makes sense with the smoothness
page 68

SecƟon 4 FEM Algorithms in C++

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u

Test Problem 1 with 0 p-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u

Test Problem 1 with 1 p-Adaptive Step

Approximation
Exact

Figure 4.9: p-adapƟvity on Problem 4.1.

of the soluƟon to this problem.

We can study the convergence rates for this problem under p-adapƟvity, as can be seen

in Figure 4.10. As discussed for a similar smooth problem in [17, p. 15] we see exponenƟal

convergence rates here. In fact, with the slight concavity we’re actually seeing some super-

exponenƟal convergence rates here.

One thing that we do noƟce about Figure 4.10 that may be slightly concerning is the point

where the error in the energy norm is higher than the error esƟmate at 25 degrees of freedom.

We’ve calculated an upper bound to the error, so the bound should never be higher than the

error. However, wemust remember that these calculaƟons havebeen computedon a computer

with finite precision, and so this situaƟonmay have happened due tomachine precision. In fact,

we may plot the error and esƟmator values for a few more iteraƟons of p-refinement in Figure

4.11 to see that the error actually increases with increasing degrees of freedom; this is further

evidence to suggest that we may be having issues with machine precision.

We note that the p-adapƟve process has actually given us the same as global p refinement,

meaning that the error esƟmator must have been roughly equally distributed. We can see,

though, that this was probably the right thing to do! Figure 4.12 shows the convergence rates

for both the h- and p-adapƟve algorithms, and shows that p-adapƟvity is far superior in reduc-
page 69

FEM Algorithms in C++ SecƟon 4

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
DoF

10 4

10 3

10 2

10 1

100

er
ro

r
Test Problem 1 p-Adaptive Error

Energy error
Error estimator

Figure 4.10: p-adapƟvity convergence rates on Problem 4.1.

ing the error than h-adapƟvity for this problem.

Our efficiency indices (defined in SecƟon 4.3) here begin withΘ0 = 1.042, and then by third

iteraƟon reduce to Θ3 = 1.002; this means, just as what we saw with h-adapƟvity, the error

bound on this problem is very efficient.

4.4.2 Test Problem 2

For p-adapƟvity for Problem 4.2, we choose an iniƟalmesh of 4 linear elements, and produce

Figure 4.13 aŌer 3 p-adapƟve steps.

We see that the results here look a liƩle strange to begin with: there are various oscillaƟons

that appear across the transiƟon between the boundary layers and the plateau in the centre

of the domain. However these oscillaƟons eventually disappear once we introduce enough
page 70

SecƟon 4 FEM Algorithms in C++

5 10 15 20 25 30 35 40
DoF

10 5

10 4

10 3

10 2

10 1

100

er
ro

r
Test Problem 1 p-Adaptive Error

Energy error
Error estimator

Figure 4.11: p-adapƟvity convergence issues on Problem 4.1.

degrees of freedom, as shown in the convergence rate in Figure 4.14. InteresƟngly, the error

indicator does not perform as efficiently as it did for the h-adapƟve algorithm, with an effi-

ciency index of Θ = 1.401 at the eighth adapƟve step. This isn’t a huge problem since the

indicator remains above the actual error, but it shows that the error indicator may not perform

as efficiently in some problems.

Comparing h- and p-adapƟvity for this problem, Figure 4.15 shows us that p-adapƟvity is

beƩer for this test problem, with its far superior convergence rate.

4.4.3 Test Problem 3

For p-adapƟvity of Problem 4.3, we (like in SecƟon 4.3) start with an iniƟal mesh of 6 linear
page 71

FEM Algorithms in C++ SecƟon 4

101 102 103

DoF

10 2

10 1

100

er
ro

r
Test Problem 1 with h- and p-Adaptivity Error

Energy error (h-adaptivity)
Error estimator (h-adaptivity)
Energy error (p-adaptivity)
Error estimator (p-adaptivity)

Figure 4.12: h- and p-adapƟvity convergence on Problem 4.1.

elements. The results for the first 3 steps of p-adapƟvity are shown in Figure 4.16.

We noƟce that aŌer the first p-adapƟve step, there is a clear overshoot of the soluƟon’s

value, likely to be caused by the steep derivaƟve needed over the shock. As we take more

steps we see these oscillaƟons both spread out and become smaller in amplitude as the poly-

nomial degrees in that region are increased. Figure 4.17 shows the polynomial degrees across

the mesh aŌer the third p-adapƟve step, and shows that the polynomial degree on the two

elements closest to the shock have been increased to 4; the polynomial degree has been leŌ

unchanged as 1 elsewhere on the domain.

4.5 hp-adapƟvity

Here we will combine the strategies of the above by making local refinements to both the

mesh and the polynomial degrees in a suitable combinaƟon. We will sƟll mark elements that
page 72

SecƟon 4 FEM Algorithms in C++

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
Test Problem 2 with 0 p-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Test Problem 2 with 1 p-Adaptive Step

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Test Problem 2 with 2 p-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Test Problem 2 with 3 p-Adaptive Steps

Approximation
Exact

Figure 4.13: p-adapƟvity on Problem 4.2. Note that for ploƫng purposes we take 10 sample points per element,
which leads to plots 3 and 4 looking not as smooth as they should; be assured that the actual soluƟon described
there are cubic and quarƟc, respecƟvely.

we will refine in the same way as before, but we now have a choice as to whether we h- or

p-refine.

As discussed in SecƟon 4.4, we can see exponenƟal convergence rates for soluƟons that are

sufficiently smooth, and we have seen in SecƟon 4.3 that we can achieve polynomial conver-

gence rates. If p-adapƟvity has higher convergence rates then why do we need to combine the

two in the first place?

If the refinement of the mesh is not strong enough, then the exponenƟal part of error re-

ducƟon (appearing from p-adapƟon) cannot appear [18, p. 604]. We therefore may need to

refine the mesh before increasing the polynomial degree, and we ought to make this decision

depending upon how ’smooth’ the soluƟon is; to detect whether the soluƟon is ’smooth’, we

introduce a so-called smoothness indicator as done in [42, p. 2733] (which is rewriƩen in more
page 73

FEM Algorithms in C++ SecƟon 4

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
DoF

10 4

10 3

10 2

10 1

100

er
ro

r
Test Problem 2 with p-Adaptivity Convergence

Energy error
Error estimator

Figure 4.14: p-adapƟvity convergence on Problem 4.2.

familiar notaƟon EquaƟon (4.10)) for u ∈ H1(K), whereK ⊆ Ω is the part of domain denoted

by a single element, κ.

FK [u] :=


∥u∥2∞(K)

[
coth(1)

(
h−1
K ∥u∥

2
L2(K) + hK |u|2H1(K)

)]−1

if u ̸≡ 0

1 if u ≡ 0

(4.10)

Combining algorithms 4.2 and 4.3with our smoothness indicatorwe get Algorithm4.4, which

is effecƟvely the same as [42, algorithm 2] (by taking τ = 0.5).

page 74

SecƟon 4 FEM Algorithms in C++

101 102

DoF

10 3

10 2

10 1

100

er
ro

r
Test Problem 2 with h- and p-Adaptivity Error

Energy error (h-adaptivity)
Error estimator (h-adaptivity)
Energy error (p-adaptivity)
Error estimator (p-adaptivity)

Figure 4.15: h- and p-adapƟvity convergence on Problem 4.2.

4.5.1 Test Problem 1

For Problem 4.1, we again start with 4 linear elements as an iniƟal mesh. Running the hp-

adapƟve algorithm for the first 3 steps gives Figure 4.18.

We noƟce that approximaƟon converges very quickly to the true soluƟon, even aŌer just a

few hp-adapƟve steps. This is shown especially well in Figure 4.19, which shows the conver-

gence rate of the hp-algorithm aŌer 8 hp-adapƟve steps, and very clearly shows exponenƟal

convergence rates.

We may also produce a graph showing the sizes and polynomial degrees for each element

aŌer 8 hp-adapƟve steps, which is shown in Figure 4.20. This shows that the algorithm, from

the iniƟal condiƟon, chose to double the number of elements (we now have 8 elements) and

increase the polynomial degrees to order 5. This is a very sensible resulƟng mesh as the true
page 75

FEM Algorithms in C++ SecƟon 4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

1.0

1.5

2.0

u

Test Problem 3 with 0 p-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

u

Test Problem 3 with 1 p-Adaptive Step

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

u

Test Problem 3 with 2 p-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

1.0

1.5

u

Test Problem 3 with 3 p-Adaptive Steps

Approximation
Exact

Figure 4.16: p-adapƟvity on Problem 4.3.

soluƟon is very smooth, upon which we expect higher-order polynomials to approximate the

soluƟon beƩer.

4.5.2 Test Problem 2

Problem 4.2 has a smooth soluƟon, but there needs to be sufficient resoluƟon around the

boundaries before a viable soluƟon becomes apparent. The hp-adapƟve algorithm produces

the results in Figure 4.21 for the first 3 hp-adapƟve steps.

Wihler [42] approximates a similar problem to Problem4.2 (where ϵ = 10−5), and produces a

plot of the convergence rates and mesh. We produce our version of these results respecƟvely

in Figures 4.22 and 4.23, ploƫng both the results to Problem 4.2 and the modified problem
page 76

SecƟon 4 FEM Algorithms in C++

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5
p

Problem 3 Mesh After 3 h-Adaptive Steps

Figure 4.17: h- and p-adapƟvity convergence issues on Problem 4.2.

given in [42, ex. 2].

First of all, we see that the hp-adapƟve strategy for Problem 4.2 yields exponenƟal conver-

gence rates, resulƟng from the use of p-adapƟvity. We noƟce that there are someƟmes lapses

in the efficiency of the error esƟmator, but it otherwise sits efficiently just above the actual

error. However there is a problem for when the graph goes beyond 70 degrees of freedom

where the energy error is higher than the error indicator; this is likely due to similar reasons as

discussed in SecƟon 4.4 when the convergence graph had a similar problem. In fact, by running

Blakey FEMwith the correct parameters for this problem, we see that the individual error indi-

cators on each element are in the order of 1× 10−15, which is in the order ofmachine precision

in this C++ implementaƟon. Therefore the likely cause for this is not a fault in themathemaƟcal

analysis, but more likely a rounding error.

The mesh shown for Problem 4.2 also shows reasonable results: the elements are smaller
page 77

FEM Algorithms in C++ SecƟon 4

Algorithm 4.4: p-refinement
Input : τh, uh,ηκ

Output: τ newh , unewh

forall κ do
if ηκ ≥ maxηκ/3 then

if FK ≥ 0.5 then
Increase polynomial degree on element;

else
Split element in half and add both these elements to τ newh

in size near the boundaries. However it is interesƟng that the polynomial degree is so high

over the plateau region. More invesƟgaƟon would need to take place to determine why this

happened, as one would expect large linear elements would be sufficient for this problem.

We may also compare our results with Wihler’s results for the modified problem to Prob-

lem 4.2 where ϵ = 10−5. We noƟce that there are some very similar features between the

two convergence rates: in parƟcular we see that there is a large gap between the error and

the esƟmator while the degrees of freedom are below 10, but this gap closes as the degrees of

freedom increase. We also noƟce that both convergence graphs yield exponenƟal convergence

rates towards the true soluƟon. However, Wihler’s results appear to indicate that the soluƟon

was found within an accuracy of 1× 10−7 with 78 degrees of freedom — but our algorithm

takes around 83 degrees of freedom to achieve this, despite using the same smoothness indi-

cators, error indicators, and problem parameters. There is likely to be some small discrepancy

in the specific numerics of each implementaƟon, but we can be can be reassured by the results

having the same qualitaƟve behaviour.

Comparing the meshes between our results andWihler’s results show roughly the same be-

haviour — in that larger elements with lower-order polynomials appear in the centre of the

domain, and smaller elements with higher-order polynomials appear at the boundaries. How-

ever the polynomial degrees in outer boundary elements do not match between our results

and Wihler’s. This could be an issue in how the boundary condiƟons have been applied, and

could also explain the slightly higher degrees of freedom needed to reduce the error in our

results.
page 78

SecƟon 4 FEM Algorithms in C++

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u

Test Problem 1 with 0 hp-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u

Test Problem 1 with 1 hp-Adaptive Step

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u

Test Problem 1 with 2 hp-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u

Test Problem 1 with 3 hp-Adaptive Steps

Approximation
Exact

Figure 4.18: hp-adapƟvity on Problem 4.1.

We can, however, be saƟsfied that our results do yield exponenƟal convergence rates to-

wards the exact soluƟon for both of these variaƟons on Problem 4.2.

4.5.3 Test Problem 3

Problem 4.3 is designed to solve the same problem as [42, ex. 4], sowe canmake some direct

comparisons between our results and the results of Wihler. Figure 4.24 shows the hp-adapƟve

algorithm for the first 3 steps, and Figures 4.25 and 4.26 respecƟvely show the convergence

rate and resulƟng mesh aŌer 20 steps. For these plots we have chosen an iniƟal mesh of 6

linear elements.

Figure 4.24 clearly shows that hp-adapƟvity is helping the approximaƟon approach the solu-

Ɵon step-by-step, and Figure 4.25 shows that the soluƟon is converging exponenƟally. Compar-

ing the convergence plot with Wihler’s plot in [42, fig. 5], we first note that our iniƟal meshes
page 79

FEM Algorithms in C++ SecƟon 4

5 10 15 20 25 30 35
DoF

10 4

10 3

10 2

10 1

100

er
ro

r
Test Problem 1 with hp-Adaptivity Convergence

Energy error
Error estimator

Figure 4.19: hp-adapƟvity convergence on Problem 4.1.

are different: ours consists of 6 linear elements, and Wihler’s consists of 4 linear elements.

Despite this, the convergence rates have roughly the same features. We actually noƟce that

at around 100 degrees of freedom, our error is calculated at just under 1× 10−4 and Wihler’s

error is calculated at somewhere between 1× 10−3 and 1× 10−4. This actually shows that our

soluƟon has a smaller error for fewer degrees of freedom thanWihler’s but, just like in SecƟon

4.5, this could be due to numerical errors or specific implementaƟon features. It could also be

due to the difference in iniƟal condiƟon.

The mesh shown in Figure 4.26 is very similar to the mesh shown in [42, fig. 5]: larger ele-

ments of degrees 4–7 appear near the boundaries, and smaller elements appear around the

shock region with high polynomial degrees around the point and low polynomial degrees in

the centre of the shock region.
page 80

SecƟon 4 FEM Algorithms in C++

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

6
p

Problem 1 Mesh After 8 hp-Adaptive Steps

Figure 4.20: hp-adapƟvity element sizes and polynomial degrees on Problem 4.1.

4.6 Results Summary

Table 4.2 illustrates the performance and effecƟveness of each algorithm on each of the

different problems. We note here that the h (global) and h entries for Problem 3 are accurate

to only 1× 10−2 but were terminated early because of a high number of degrees of freedom,

and are indicated by the braces (); the entries for the same problem for p (global) and p are

accurate to only 1× 10−1 for similar reasons, and are indicated with curly braces {}.

Problem h (global) h p (global) p hp
4.1 11 [8193] 14 [1677] 4 [21] 4 [21] 6 [33]
4.2 9 [2049] 13 [397] 6 [29] 4 [17] 7 [27]
4.3 (13 [32769]) (19 [2131]) {14 [91]} {14 [35]} 10 [64]

Table 4.2: For each problem, shows the number of iteraƟons [and degrees of freedom in brackets] for each algo-
rithm to take the approximaƟon within 1× 10−3 of the exact soluƟon in the energy norm, with the excepƟon of
those in braces and curly braces.

page 81

FEM Algorithms in C++ SecƟon 4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u
Test Problem 2 with 0 hp-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Test Problem 2 with 1 hp-Adaptive Step

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Test Problem 2 with 2 hp-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Test Problem 2 with 3 hp-Adaptive Steps

Approximation
Exact

Figure 4.21: hp-adapƟvity on Problem 4.2.

For each of the test problems, we can see thath-adapƟvity certainly has at least some advan-

tage over global h-refinement (illustrated by Figures 4.3, 4.5, and 4.8). We can see, therefore,

that our error indicators are funcƟoning as we’d like and that they are suitable for adapƟve al-

gorithms. In parƟcular, Problem 4.2 had achieved a much lower error in the energy norm with

fewer degrees of freedom due to the algorithm only refining the mesh near the boundaries,

and not in the centre of the domain where it is not needed.

We noƟce similar results for p-adapƟvity, where the adapƟvity has had at least some sort

of advantage, as shown in Figures 4.10, 4.14, and 4.17. In parƟcular, Problem 4.1 benefited

hugely from using p-adapƟvity.

For hp-adapƟvity, we see (with the excepƟon of Problem 4.1) an advantage of using hp-

adapƟvity over exclusive h or p global refinement. In fact, for Problem 4.3, the degrees of

freedom for a lower error were reduced by a factor of roughly 500, which shows the power of
page 82

SecƟon 4 FEM Algorithms in C++

10 20 30 40 50 60 70 80
DoF

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

er
ro

r

Test Problem 1 with hp-Adaptivity Convergence
Energy error
Error estimator

10 20 30 40 50 60 70 80
DoF

10 6

10 4

10 2

100

er
ro

r

Wihler's Boundary Layer Problem with hp-Adaptivity Convergence
Energy error
Error estimator

Figure 4.22: hp-adapƟvity convergence on Problem 4.2 (leŌ) and Wihler’s problem (right).

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

8

10

p

Test Problem 2 Mesh After 20 hp-Adaptive Steps

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

6

7

8

9

p

Wihler's Boundary Layer Problem Mesh After 20 hp-Adaptive Steps

Figure 4.23: hp-adapƟvity element sizes andpolynomial degrees onProblem4.2 (leŌ) andWihler’s problem (right).

hp-adapƟve algorithms.

The avid reader may noƟce that these three examples were chosen specifically to highlight

the types of soluƟons that may benefit from the different adapƟvity techniques. In parƟcu-

lar, we noƟce that Problem 4.1 performed parƟcularly well with p-adapƟvity (likely due to the

high smoothness), Problem 4.2 performed parƟcularly well with h-adapƟvity (likely due to the

boundaries), and Problem 4.3 performed parƟcularly well with hp-adapƟvity (likely due to a

mixture of the small shock region and the soluƟon’s overall smoothness).

page 83

FEM Algorithms in C++ SecƟon 4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

1.0

1.5

2.0

u

Test Problem 3 with 0 hp-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

Test Problem 3 with 1 hp-Adaptive Step

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

u

Test Problem 3 with 2 hp-Adaptive Steps

Approximation
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

1.0

1.5

u

Test Problem 3 with 3 hp-Adaptive Steps

Approximation
Exact

Figure 4.24: hp-adapƟvity on Problem 4.3.

page 84

SecƟon 4 FEM Algorithms in C++

20 40 60 80 100
DoF

10 4

10 3

10 2

10 1

100

101

er
ro

r

Test Problem 3 with hp-Adaptivity Convergence
Energy error
Error estimator

Figure 4.25: hp-adapƟvity element sizes and polynomial degrees on Problem 4.3.

page 85

FEM Algorithms in C++ SecƟon 4

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

8

10

12

14

p

Test Problem 3 Mesh After 20 hp-Adaptive Steps

Figure 4.26: hp-adapƟvity element sizes and polynomial degrees on Problem 4.3.

page 86

SecƟon 5

Nonlinear Problems

The problem given in SecƟon 2.2.1 is very clearly a linear differenƟal equaƟon; we can also

consider a different model problem that is nonlinear, as given in EquaƟon (5.1), and follow a

similar procedure as before to derive the weak formulaƟon of this problem. Similarly to the

previous problem, for a given bounded Lipschitz domain Ω ⊆ Rd, d ≥ 1, we seek u such that

−ϵ∆u = f(x, u(x)), x ∈ Ω (5.1a)

u = 0, on ∂Ω (5.1b)

Here, ϵ > 0 and f : Ω× R→ R is conƟnuously differenƟable.

For this problem we will seek u in the funcƟon spaceH1
0 (Ω) =: V .

MulƟplying EquaƟon (5.1a) by a test funcƟon, v ∈ H1
0 (Ω) to give

−ϵ∆uv = fv, ∀v ∈ H1
0 (Ω).

IntegraƟng over the domain and performing integraƟon by parts as done previously we need

to find u ∈ H1
0 (Ω) such that

ϵ(∇u,∇v) = (f(u), v), ∀v ∈ H1
0 (Ω), (5.2)

FEM Algorithms in C++ SecƟon 5

where we have suppressed the dependence of x in f for simplicity. NoƟce that this problem

is almost the same as the problem given in SecƟon 2.2.1 except we have implicitly moved the

”(cu, v)” into f and now allowed f to depend upon u.

Our finite element method is: uh,p ∈ Vh ⊂ H1
0 (Ω) such that

ϵ(∇uh,p,∇vh) = (f(uh,p), vh), ∀vh ∈ Vh. (5.3)

Note that we cannot use Lax-Milgram for proving existence and uniqueness of the nonlinear

problem; in fact this report will not concern itself with proving the existence or uniqueness of

this nonlinear problem and instead supposes that at least one soluƟon exists, just as Amrein

et. al [3]. The report instead relies on results such as those in [28] for checking final soluƟons.

WriƟng X = H1
0 (Ω), we denote X−1 = H−1(Ω) as the dual space of X (cf. [7, p. 219]).

Hence, we may define the map Fϵ : X → X−1 by

⟨Fϵ(u), v⟩ := (ϵ∇u,∇v)− (f(u), v),∀v ∈ X,

where ⟨·, ·⟩ is the dual product inX−1 ×X .

Hence, theweak formulaƟonmay bewriƩen in the equivalent nonlinear operator form: Find

u ∈ X such that

Fϵ(u) = 0. (5.4)

We define the ϵ-norm as:

∥u∥ϵ :=
(
∥∇u∥2L2(Ω) + ∥u∥

2
L2(Ω)

) 1
2
.

Newton’s method seeks to compute zeros such that EquaƟon (5.4) is saƟsfied. Assuming

that the Fréchet derivaƟve of Fϵ, F ′
ϵ exists, then the Newton’s method is given by: for an iniƟal

page 88

SecƟon 5 FEM Algorithms in C++

guess, u0, we generate

un+1 = un +∆un, n ≥ 0,

where each update,∆un, saƟsfies

F ′
ϵ(u

n)∆un = −Fϵ(u
n), n ≥ 0.

Newton’s method is not very reliable when the iniƟal guess is far away, so we introduce a

dampening parameter, θn ∈ [0, 1]:

un+1 = un − θn∆un, n ≥ 0,

where θn may be chosen according to [3, sec. 2.2]. We have chosen the value in a similar way,

except we choose the ϵ-norm in the calculaƟon of the parameter:

θn =

√
2τ∥Fϵ(un)∥−1

ϵ ,

where τ > 0 is the tolerance in which we hope to solve subsequent steps to within Newton’s

method.

For our parƟcular model problem in EquaƟon (5.1), the Fréchet derivaƟve of Fϵ is given by

⟨F ′
ϵ(u)w, v⟩ =

∫
Ω

ϵw′v′ dx−
∫
Ω

f ′(u)wv dx.

Hence, given u0, Newton’s method is: Find un+1 ∈ X such that

F ′
ϵ(u

n)(un+1 − un) = −θnFϵ(u
n). (5.5)

Akin to the linear model problem, we may introduce two funcƟonals to help us write this

page 89

FEM Algorithms in C++ SecƟon 5

more concisely:

aϵ(u
n;un+1, v) = aϵ(u

n;un, v)− θnlϵ(un; v),∀v ∈ X, (5.6)

where

aϵ(u;w, v) :=

∫
Ω

(ϵw′v′ − f ′(u)wv) dx

and

lϵ(u; v) :=

∫
Ω

(ϵu′v′ − f(u)v) dx.

We can use aϵ and lϵ in an analogous way to the linear problem to compute the Newton

update at each Newton step.

5.1 Simple Numerics

5.1.1 Test Problem 1 (Nonlinear)

Problem 5.1.

The Bratu problem in one dimension has, depending upon the bifurcaƟon parameter ϵ, some-

where between zero and two soluƟons.

The data is set on EquaƟon (5.1) as f = exp(u), c ≡ 0, and we will allow ϵ to vary slightly.

We note from [28, p. 27] that the criƟcal value of the bifurcaƟon parameter is ϵc ≈ 1/3.514.

Provided that our bifurcaƟon parameter ϵ > ϵc, the problem has two soluƟons — and this is

the case that we will consider.

We will solve this nonlinear problem with 20 elements, from which we will vary the bifurca-

Ɵon parameter and iniƟal condiƟon. As suggested by Mohsen [28, p. 28], we will set the iniƟal
page 90

SecƟon 5 FEM Algorithms in C++

condiƟon for each simulaƟon to be

u0(x) = a sin(πx).

We show the results for various iniƟal condiƟons and bifurcaƟon parameters, producing Figure

5.1.

We note that, aŌer comparing with the maximum values of the soluƟon given by Mohsen

[28, p. 29], that the values appear to be correct.

5.1.2 Test Problem 2 (Nonlinear)

For this nonlinear test problem, we will actually choose a linear problem to make sure that

the solver works in this degeneraƟve case. We will take our new problem as the same as the

boundary layer problem, given as Problem4.2. For the parameters for our newmodel equaƟon,

we give these in Problem 5.2.

Problem 5.2.

A boundary layer problem, exhibiƟng boundaries near x = 0 and x = 1, as given in [42, ex. 2]

with the exact soluƟon

u(x) = − exp(x/
√
ϵ)

exp(1/
√
ϵ) + 1

− exp(−x/
√
ϵ) exp(1/

√
ϵ)

exp(1/
√
ϵ) + 1

+ 1.

The data is set on EquaƟon (5.1) as ϵ = 10−3, f ≡ −1− u.

Running with the correct parameters produces Figure 5.2. We see that the features of the

soluƟon are present, very similarly to the soluƟons shown in SecƟon 4 which suggests that our

nonlinear solver works for the degeneraƟve linear case.

page 91

FEM Algorithms in C++ SecƟon 5

5.1.3 Test Problem 3 (Nonlinear)

Problem 5.3.

Here we will solve the steady one-dimensional version of Fisher’s equaƟon with zero boundary

condiƟons. The problem infinitely many soluƟons [3, p. 1652].

The data is set on EquaƟon (5.1) as ϵ = 0.00025, f = u(u− 1).

We choose a similar iniƟal condiƟon to Amrein et. al [3, fig. 3] that consists of four plateaued

peaks at u0 = 1, and three plateaued troughs at u0 = −0.4. From this iniƟal data we produce

Figure 5.3.

The figure displays the same aƩributes as those in [3] so that we can be fairly sure that

this works. Although we aren’t studying here the convergence or refinement properƟes of

the approximaƟon, we note that the Newton solver converged within an l2-norm tolerance of

1× 10−3 between subsequent terms within 30 steps.

page 92

SecƟon 5 FEM Algorithms in C++

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Problem 1 with a=1, =10
Approximation

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

6

7

8

u

Problem 1 with a=8, =10
Approximation

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Problem 1 with a=1, =1
Approximation

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

6

7

8

u

Problem 1 with a=8, =1
Approximation

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Problem 1 with a=1, =1/3
Approximation

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

6

7

8

u

Problem 1 with a=6, =1/3
Approximation

Figure 5.1: SoluƟons of Problem 5.1. Lower soluƟons are displayed on the leŌ and upper soluƟons are displayed
on the right.

page 93

FEM Algorithms in C++ SecƟon 5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Problem 2

Approximation

Figure 5.2: SoluƟon of Problem 5.2.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

Problem 3 Initial Condition

u0

0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

Problem 3

Approximation

Figure 5.3: IniƟal condiƟon (leŌ) and soluƟon (right) of Problem 5.3.

page 94

SecƟon 6

Conclusions

In conclusion, we found that anhp-adapƟve algorithm for finite elementmethods can greatly

reduce the degrees of freedom for high-accuracy results, especially when smooth funcƟons

with steep derivaƟves are involved. This considerably reduced computaƟonal resources over

the global refinement strategy that would be necessary for the same accuracy. We did find

some situaƟons where a p-adapƟve algorithm yielded higher convergence rates between the

degrees of freedom and error, but the hp-adapƟve was the most consistent in doing so.

We started in SecƟon 2 by laying the background in hp-FEMs, creaƟng a linear model prob-

lem, and proving that the chosen problem was well-posed.

We outlined the specific implementaƟon choices in SecƟon 3, which were heavily influenced

by the work of Šolín et. al [33]; the implementaƟon focused on creaƟng an efficient piece of

soŌware: the efficiency was parƟcularly increased by the use of an intelligent cache with the

quadrature calculaƟons and an efficient class structure. Further discussions were made at how

the code could be further opƟmised with, for example, parallelising the linear system solving

process and implemenƟng a sparse matrix data structure. In parƟcular we note that we used a

non-parallelisable iteraƟve conjugate gradient method for solving all linear systems that arose,

which significantly restricts the available compuƟng resources available on most modern-day

computers; we note that a parallelisable version of the conjugate gradient method could be

implemented, as suggested by Hestenes et. al [20]. We also note that the code was wriƩen in

a generic way, allowing for further adaptability and extension of features if future developers

were to conƟnue this project.

A posteriori error bounds were derived and proved for a linear problem in SecƟon 4, in-

fluenced by the work of Schwab [32]. We further derived local element indicators leading to

FEM Algorithms in C++ SecƟon 6

robust and efficient adapƟvity algorithms, and made use of a smoothness parameter that was

used in the work of Wihler [42]. We solved some numerical calculaƟons for three chosen test

problems; we found that the h- and p-adapƟve algorithms worked with varying success de-

pending upon the specific test problem, but the hp-adapƟve algorithm consistently performed

well and yielded high (exponenƟal) rates of convergence. In nearly all cases, global refinement

of h and p separately were very costly and unnecessary.

SecƟon 5 introduced a newmodel problem that was nonlinear (specifically semilinear). This

new model problem was implemented into the code, using inheritance to reduce code redun-

dancy from the linear solving process. In parƟcular we used a Newton solver to solve the re-

sulƟng nonlinear system. For this model problemwe chose a further three test problems to be

solved, for which the results appeared to coincide with the results of other authors performing

the same calculaƟons [28, 3].

Further work on this project could involve generalising the implementaƟon to work with

dimensions higher than one, which would benefit most real-world problems; our implementa-

Ɵon is concerned only with one-dimensional PDEs, but is designed in a way that would easily

support higher-dimensional PDEs in the future. We could also work toward implemenƟng the

a posteriori error bounds and using them to give hp-adapƟve algorithms to nonlinear model

problems, like the work demonstrated by Amrein et. al [3].

page 96

Appendix A

Code

Note that all of the code for this project can be found on the GitHub repository, as shown

on Page 2. We will specifically list and discuss the code here for the Solve method of the

Solution_linear class, to give an idea of the process involved in the solvers. We also include

the calculaƟon of the value of the bilinear funcƟonal, a(u, v), and linear funcƟonal l(v).

1 void Solution_linear::Solve(const double &a_cgTolerance)

2 {

3 // Left and right boundary conditions.

4 double A = 0;

5 double B = 0;

6

7 // Degrees of freedom and elements pointer.

8 int n = this->mesh->elements->get_DoF();

9 Elements* elements = this->mesh->elements;

10

11 // Stiffness and matrix and load vector for the FEM sovler.

12 Matrix_full<double> stiffnessMatrix(n, n, 0);

13 std::vector<double> loadVector(n, 0);

14

15 // Loops over all elements.

16 for (int elementCounter=0; elementCounter<this->noElements;

++elementCounter)↪→

17 {

FEM Algorithms in C++ SecƟon A

18 // Pointer to our current element.

19 Element* currentElement =

(*(this->mesh->elements))[elementCounter];↪→

20

21 // All degrees of freedom associated with this element.

22 std::vector<int> elementDoFs =

elements->get_elementDoFs(elementCounter);↪→

23

24 // Loops over first combination of basis functions.

25 for (int a=0; a<elementDoFs.size(); ++a)

26 {

27 // Current first degree of freedom.

28 int j = elementDoFs[a];

29

30 // Basis functions needed.

31 f_double basis = currentElement->basisFunction(a, 0);

32

33 // Adds to load vector.

34 loadVector[j] += this->l(currentElement, basis);

35

36 // Loops over second combination of basis functions.

37 for (int b=0; b<elementDoFs.size(); ++b)

38 {

39 // Current second degree of freedom.

40 int i = elementDoFs[b];

41

42 // Basis functions needed.

43 f_double basis1 = currentElement->basisFunction(b, 0);

44 f_double basis2 = currentElement->basisFunction(a, 0);

page 98

SecƟon A FEM Algorithms in C++

45 f_double basis1_ = currentElement->basisFunction(b, 1);

46 f_double basis2_ = currentElement->basisFunction(a, 1);

47

48 // Adds to stiffness matrix.

49 double value = stiffnessMatrix(i, j);

50 stiffnessMatrix.set(i, j, value +

this->a(currentElement, basis1, basis2, basis1_,

basis2_));

↪→

↪→

51 }

52 }

53 }

54

55 // Temporary load vector and boundary element contribution.

56 std::vector<double> F_(n);

57 std::vector<double> u0(n, 0);

58

59 // The degree of freedom to apply the second boundary condition at.

60 int m = this->mesh->elements->get_noElements();

61

62 // Zeroes rows and columns associated with first boundary condition.

63 for (int i=0; i<stiffnessMatrix.get_noRows(); ++i)

64 stiffnessMatrix.set(0, i, 0);

65 for (int j=0; j<stiffnessMatrix.get_noColumns(); ++j)

66 stiffnessMatrix.set(j, 0, 0);

67 loadVector[0] = 0;

68

69 // Zeroes rows and columns associated with second boundary

condition.↪→

70 for (int i=0; i<stiffnessMatrix.get_noRows(); ++i)

page 99

FEM Algorithms in C++ SecƟon A

71 stiffnessMatrix.set(m, i, 0);

72 for (int j=0; j<stiffnessMatrix.get_noColumns(); ++j)

73 stiffnessMatrix.set(j, m, 0);

74 loadVector[m] = 0;

75

76 // Enforces boundary condition on contribution vector.

77 u0[0] = A;

78 u0[m] = B;

79

80 // Removes contribution from load vector.

81 F_ = stiffnessMatrix*u0;

82 for (int i=0; i<n; ++i)

83 loadVector[i] -= F_[i];

84

85 // Enforces boundary condition in the stiffness matrix.

86 stiffnessMatrix.set(0, 0, 1);

87 stiffnessMatrix.set(m, m, 1);

88

89 // Calculates and stores the solution to a specified conjugate

gradient tolerance.↪→

90 this->solution = linearSystems::conjugateGradient(stiffnessMatrix,

loadVector, a_cgTolerance);↪→

91

92 // Re-enforces the boundary conditions.

93 this->solution[0] = A;

94 this->solution[m] = B;

95 }

96

97 double Solution_linear::l(Element* currentElement, f_double &basis)

page 100

SecƟon A FEM Algorithms in C++

98 {

99 // Jacobian for this element.

100 double J = currentElement->get_Jacobian();

101

102 // Initialises return value.

103 double integral = 0;

104

105 // Gets element quadrature.

106 std::vector<double> coordinates;

107 std::vector<double> weights;

108 currentElement->get_elementQuadrature(coordinates, weights);

109

110 // Loops over all coordiantes and weights.

111 for (int k=0; k<coordinates.size(); ++k)

112 {

113 // Basis function and f values at this coordinate.

114 double b_value = basis(coordinates[k]);

115 double f_value =

this->f(currentElement->mapLocalToGlobal(coordinates[k]));↪→

116

117 // Adds these combinations to the return value.

118 integral += b_value*f_value*weights[k]*J;

119 }

120

121 // Returns value.

122 return integral;

123 }

124 double Solution_linear::a(Element* currentElement, f_double &basis1,

f_double &basis2, f_double &basis1_, f_double &basis2_)↪→

page 101

FEM Algorithms in C++ SecƟon A

125 {

126 // Jacobian for this element.

127 double J = currentElement->get_Jacobian();

128

129 // Initialises return value.

130 double integral = 0;

131

132 // Gets element quadrature.

133 std::vector<double> coordinates;

134 std::vector<double> weights;

135 currentElement->get_elementQuadrature(coordinates, weights);

136

137 // Loops over all coordinates and weights for first term in

equation.↪→

138 for (int k=0; k<coordinates.size(); ++k)

139 {

140 // Combination of basis functions at this coordinate.

141 double b_value = basis1_(coordinates[k]) *

basis2_(coordinates[k]);↪→

142

143 // Adds to the return value.

144 integral += this->epsilon*b_value*weights[k]/J;

145 }

146

147 // Loops over all coordinates and weights for second term in

equation.↪→

148 for (int k=0; k<coordinates.size(); ++k)

149 {

150 // Basis and c values at this coordinate.

page 102

SecƟon A FEM Algorithms in C++

151 double b_value = basis1(coordinates[k]) *

basis2(coordinates[k]);↪→

152 double c_value =

this->c(currentElement->mapLocalToGlobal(coordinates[k]));↪→

153

154 // Adds to the return value.

155 integral += c_value*b_value*weights[k]*J;

156 }

157

158 // Returns value.

159 return integral;

160 }

The comments on this piece of code are hopefully clear enough to describe the process, but

the general idea is:

1. Loop over all elements

(a) For each element, find the associated degrees of freedom

(b) Loop over first combinaƟon of degrees of freedom

i. Add value of l(v) (or nonlinear equivalent) to appropriate index in load vector

ii. Loop over second combinaƟon of degrees of freedom

A. Add value of a(u, v) (or nonlinear equivalent) to appropriate index in sƟff-

ness matrix

2. Find contribuƟon of boundary condiƟons to the soluƟon

3. Remove boundary condiƟon contribuƟon from the load vector

4. Enforce both boundary condiƟons

5. Solve the resulƟng linear (or nonlinear) system

page 103

Appendix B

References

[1] Object Management Group (OMG). OMG Unified Modeling Language. https://www.

omg.org/spec/UML/2.5.1/PDF. [Online; accessed 07-May-2020]. 2017.

[2] Robert A. Adams. Sobolev Spaces. Academic Press, 1975. ®Ý�Ä: 9780120441501.

[3] Mario Amrein and Thomas P. Wihler. “Fully adapƟve Newton-Galerk in methods for

semilinear ellipƟc parƟal differenƟal equaƟons”. In: SIAM Journal on ScienƟfic Comput-

ing 37.4 (2015), A1637–A1657.

[4] Harbir AnƟl, RicardoH. Nochetoo, and Patrick Sodré. “OpƟmal control of a free boundary

problem with surface tension effects: a priori error analysis”. In: 53.5 (2015), pp. 2279–

2306.

[5] I. Babuska and W.C. Rheinboldt. “Error EsƟmates for AdapƟve Finite Element Computa-

Ɵons”. In: SIAM Journal on Numerical Analysis 15.4 (1978), pp. 736–754.

[6] Amit Bhaya et al. “A cooperaƟve conjugate gradient method for linear systems permit-

Ɵng efficient mulƟ-thread implementaƟon”. In: ComputaƟonal and Applied Mathemat-

ics 37.2 (2018), pp. 1601–1628. ®ÝÝÄ: 18070302.

[7] HaimBrezis. FuncƟonal Analysis, Sobolev Spaces andParƟal DifferenƟal EquaƟons. Springer,

2010. ®Ý�Ä: 978-0-387-70913-0.

[8] Richard L. Burden and J. Douglas Faires. Numerical Analysis. 9th ed. Cengage Learning,

2010. ®Ý�Ä: 9780538733519.

[9] Ward Cheney. Analysis for Applied MathemaƟcs. 2001. ®Ý�Ä: 978-1-4757-3559-8.

[10] Philippe G. Ciarlet. The Finite ElementMethod for EllipƟc Problems. Philadelphia: Society

for Industrial and Applied MathemaƟcs, 2002. ®Ý�Ä: 9780898715149.

https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

SecƟon B FEM Algorithms in C++

[11] Lokenath Debnath and PiotrMikusiński. IntroducƟon to Hilbert Spaces with ApplicaƟons.

Academic Press, 2005. ®Ý�Ä: 978-0122084386.

[12] James F Epperson. An introducƟon to numerical methods and analysis / James F. Epper-

son. 2nd ed. Wiley, 2013. ®Ý�Ä: 1118367596.

[13] Stanley J. Farlow. An IntroducƟon to DifferenƟal EquaƟons and their ApplicaƟons. Dover

PublicaƟons, Inc., 2015. ®Ý�Ä: 9780486445953.

[14] Stefano Giani and Paul Houston. “Anisotropic hp-adapƟve disconƟnuous Galerkin finite

element methods for compressible fluid flows”. In: InternaƟonal Journal of Numerical

Analysis and Modeling 9.4 (2012), pp. 928–949.

[15] Wei Gong, Michael Hinze, and Zhaojie Zhou. “Finite Element Method and A Priori Er-

ror EsƟmates for Dirichlet Boundary Control Problems Governed by Parabolic PDEs”. In:

Journal of ScienƟfic CompuƟng 66.3 (2016), pp. 941–967. �Ê®: 10.1007/s10915-015-

0051-2.

[16] Hauke Gravenkamp, Sundararajan Natarajan, and Wolfgang Dornisch. “On the use of

NURBS-based discreƟzaƟons in the scaled boundary finite element method for wave

propagaƟon problems”. In: Computer Methods in Applied Mechanics and Engineering

315 (2017), pp. 867–880. ®ÝÝÄ: 00457825. �Ê®: 10.1016/j.cma.2016.11.030.

[17] Hauke Gravenkamp, Albert A. Saputra, and Sascha Duczek. “High-Order Shape FuncƟons

in the Scaled Boundary Finite Element Method Revisited”. In: Archives of ComputaƟonal

Methods in Engineering (2019). ®ÝÝÄ: 18861784. �Ê®: 10.1007/s11831-019-09385-1.

[18] W. Gui and I. Babuška. “The h, p and h-p Versions of the Finite Element Method in 1

Dimension: Part I. The Error Analysis of the p-Version”. In: Numerische MathemaƟk 49

(1986), pp. 577–612. ®ÝÝÄ: 0029599X.

[19] Yiqian He, HaiƟan Yang, and Andrew J. Deeks. “Use of Fourier shape funcƟons in the

scaled boundary method”. In: Engineering Analysis with Boundary Elements 41 (2014),

pp. 152–159. �Ê®: 10.1016/j.enganabound.2014.01.012.

page 105

https://doi.org/10.1007/s10915-015-0051-2
https://doi.org/10.1007/s10915-015-0051-2
https://doi.org/10.1016/j.cma.2016.11.030
https://doi.org/10.1007/s11831-019-09385-1
https://doi.org/10.1016/j.enganabound.2014.01.012

FEM Algorithms in C++ SecƟon B

[20] Magnus R. Hestenes and Eduard SƟefel. “Methods of Conjugate Gradients for Solving

Linear Systems”. In: Journal of Research of the NaƟonal Bureau of Standards 49 (6 1952),

pp. 409–436.

[21] Paul Houston, Christoph Schwab, and Endre Süli. “Stabilized hp-finite element methods

for first-order hyperbolic problems”. In: SIAM Journal on Numerical Analysis 37.5 (2000),

pp. 1618–1643. �Ê®: 10.1137/S0036142998348777.

[22] Paul Houston and Endre Süli. “A note on the design of hp-adapƟve finite element meth-

ods for ellipƟc parƟal differenƟal equaƟons”. In: Computer Methods in Applied Mechan-

ics and Engineering 194.2-5 SPEC. ISS. (2005), pp. 229–243. ®ÝÝÄ: 00457825.

[23] Paul Houston and Thomas P Wihler. “An hp-adapƟve Newton-DisconƟnuous-Galerkin

Finite Element Approach for Semilinear EllipƟc Boundary Value Problems”. In: Mathe-

maƟcs of ComputaƟon 87 (2018), pp. 2641–2674.

[24] hƩps://www.learncpp.com/. 0.3 — IntroducƟon to C/C++. https://www.learncpp.

com/cpp- tutorial/introduction- to- cplusplus/. [Online; accessed 5-March-

2020]. 2007.

[25] Claes Johnson.Numerical SoluƟons of ParƟal DifferenƟal EquaƟons by the Finite Element

Method. Press Syndicate of the University of Cambridge, 1987. ®Ý�Ä: 0521347580.

[26] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Univer-

sity Press, 2004. ®Ý�Ä: 9780521009249.

[27] William F. Mitchell and Marjorie A. McClain. “A survey of hp-adapƟve strategies for el-

lipƟc parƟal differenƟal equaƟons”. In: Recent Advances in ComputaƟonal and Applied

MathemaƟcs 41.1 (2011), pp. 227–258.

[28] A. Mohsen. “A simple soluƟon of the Bratu problem”. In: Computers and MathemaƟcs

with ApplicaƟons 67.1 (2014), pp. 26–33.

[29] Alexander Petkov. How to explain object-oriented programming concepts to a 6-year-

old. https://www.freecodecamp.org/news/object-oriented-programming-

concepts-21bb035f7260/. [Online; accessed 5-March-2020]. 2018.

page 106

https://doi.org/10.1137/S0036142998348777
https://www.learncpp.com/cpp-tutorial/introduction-to-cplusplus/
https://www.learncpp.com/cpp-tutorial/introduction-to-cplusplus/
https://www.freecodecamp .org/news/object-oriented-programming-concepts-21bb035f7260/
https://www.freecodecamp .org/news/object-oriented-programming-concepts-21bb035f7260/

SecƟon B FEM Algorithms in C++

[30] Rostamian Rouben. “GaussianQuadrature”. In: Programming Projects in C for Students of

Engineering, Science, andMathemaƟcs. Society for Industrial and AppliedMathemaƟcs,

2014, pp. 291–300. ®Ý�Ä: 9781611973495.

[31] Yousef Saad. IteraƟveMethods for Sparse Linear Systems. SIAM, 2003. ®Ý�Ä: 9780898715347.

[32] Christoph Schwab. p- and hp- Finite Element Methods: Theory and ApplicaƟons in Solid

and Fluid Mechanics. Oxford Science PublicaƟons, 1998. ®Ý�Ä: 0198503903.

[33] Pavel Šolín, Karel Segeth, and Ivo Doležel. Higher-Order Finite Element Methods. Chap-

man & Hall/CRC, 2003. ®Ý�Ä: 9781584884385.

[34] John C. Strikwerda. Finite Difference Schemes and ParƟal DifferenƟal EquaƟons. SIAM,

2004. ®Ý�Ä: 9780898715675.

[35] Bjarne Stroustrup. The C++ Programming Language. 4th ed. Pearson EducaƟon, 2013.

®Ý�Ä: 978-0-321-56384-2.

[36] Endre Süli and David F. Mayers. An IntroducƟon to Numerical Analysis. Cambridge Uni-

versity Press, 2003.

[37] Herb SuƩer. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in SoŌ-

ware. http : / / www . gotw . ca / publications / concurrency - ddj . htm. [Online;

accessed 30-April-2020]. 2009.

[38] Gabor Szegö. Orthogonal Polynomials. American MathemaƟcal Society, 1967.

[39] R. Verfürth. “A posteriori error esƟmaƟon and adapƟve mesh-refinement techniques”.

In: 50.1-3 (1994), pp. 67–83. ®ÝÝÄ: 0377-0427.

[40] Thu Hang Vu and Andrew J. Deeks. “Blossom-Quad: A non-uniform quadrilateral mesh

generator using a minimum-cost perfect-matching algorithm”. In: InternaƟonal Journal

for Numerical Methods in Engineering 73 (2008), pp. 47–70.

[41] Werner C . Rheinboldt. “On a Theory of Mesh-Refinement Processes”. In: SIAM Journal

on Numerical Analysis 17.6 (1980), pp. 766–778.

[42] Thomas P. Wihler. “An hp-adapƟve strategy based on conƟnuous Sobolev embeddings”.

In: Journal of ComputaƟonal and Applied MathemaƟcs 235.8 (2011), pp. 2731–2739.

®ÝÝÄ: 03770427. �Ê®: 10.1016/j.cam.2010.11.023.
page 107

http://www.gotw.ca/publications/concurrency-ddj.htm
https://doi.org/10.1016/j.cam.2010.11.023

FEM Algorithms in C++ SecƟon B

[43] Henry Wilbraham. “On a certain periodic funcƟon”. In: The Cambridge MathemaƟcal

Journal 7 (1848), pp. 198–201.

page 108

	Introduction
	Background
	FEM Notation
	Weak Solutions of PDEs in Rd
	Model Problem
	Lax-Milgram

	hp-FEM

	Implementation: Blakey FEM
	Meshes
	Polynomial Spaces
	Elements
	Linear Solvers
	Nonlinear Solvers
	Quadrature
	Object-Oriented Design
	Simple Numerics

	A Posteriori Error Estimation and Adaptivity
	A Posteriori Error Estimation in 1D
	Example Problems
	h-adaptivity
	p-adaptivity
	hp-adaptivity
	Results Summary

	Nonlinear Problems
	Simple Numerics

	Conclusions
	Code
	blueoneReferences

