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T
his report contains my progress so far, ultimately aiming to construct a reliable
and realistic in-silico model of the haemodynamics in the human placenta. We plan
to take advantage of hp-adaptive FEMs, as well as specialised techniques in FSI and

multiscale modelling to achieve this.

1 PhD Work

1.1 Introduction and Literature Review

Differential equations are widely used in science and engineering to explain and predict facts about
real-world phenomena – from predicting the planetary orbits and the weather, to the modelling of
epidemics and traffic flow, to the design of buildings and aeroplanes. However, even simple models often
do not yield analytical solutions, so one of two approaches is usually taken instead: solve a simplified
model to find an approximate solution to the original equations, or approximate the equations directly
using some form of numerical method; the latter is the focus of this report. In particular, this project
aims to develop a validated biophysical model of blood flow distribution across the intervillous space
(IVS) of the human placenta, incorporating the recently observed placental pump [15].

Jensen and Chernyavsky explain the role and modelling techniques of the placenta eloquently in [28].
In summary, the placenta has two main purposes: to exchange blood and nutrients between mother
and fetus. In human placentas, fetal blood flows through many small villi that are submerged in
maternal blood. Current models describe the IVS containing the villi as a deformable porous medium.
We specifically plan to model the flow of maternal blood surrounding the villi in the placenta, as shown
in Figure 1; the figure outlines the villi containing the fetal blood, surrounded by maternal blood in
the IVS.
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Figure 1: (A) Schematic showing flow of both maternal and fetal blood through the placenta. Fetal blood flows
through fetal vessels across the chorionic plate to the villous tree and returns along the same route.
Maternal blood flows through spiral arteries into the IVS and exits via the draining veins. (B) Typical
placental MRI image, with the purple colouring corresponding to the placental region of interest.
Image taken from [15].

The ‘utero-placental pump’ is a new phenomenon that is documented by Dellschaft et al. in [15]
where it has been found experimentally that placental volume can reduce by up to 40% in contractions
over a 10-minute period. We plan to model this phenomenon computationally.

It is quite early into this project to specify exactly what tools will be used to build up the described
biophysical model, but suitable approaches include:

• Darcy flow in the IVS [13][28];

• Fluid-structure interaction (FSI) and moving boundary techniques to capture placental pump
phenomenon [3][4][14][15];

• Multiscale modelling techniques for villous structures [27][30].

We choose to use finite element methods for modelling these effects computationally — and more
specifically, we choose to use discontinuous Galerkin finite element methods (DGFEMs). Continuous
Galerkin finite element methods (CGFEMs) also exist and enforce continuity between ‘elements’ in each
computational mesh. Loosely speaking, DGFEMs are somewhat of a hybrid between classical continuous
FEMs and finite volume methods (FVMs) [10], the latter being used extensively in computational
fluid dynamics (CFD) simulations. Cangiani et al. [10] explain that DGFEMs are a great choice for
modelling in many practical settings due to their simple treatment of complicated geometries, ease
of adaptivity in both the local mesh subdivision and local polynomial enrichment, and availability
of rigorous error analysis tools. A posteriori tools are of particular practical interest for both error
quantification as well as automatic adaptivity strategies, and form a great choice of method for our
application.

The IVS of the placenta can be, and has been, modelled as a deformable porous medium. There are
two main approaches to modelling flow in this region, either using tree-scale models that are on the scale
of an entire villous tree, or using pore-scale models that resolve features at the level of individual villous
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branches (approximately 50 µm) [28]; models at each scale model different behaviour, one of which may
be more important for certain applications. Chernyavsky, Jensen, and Leach use a tree-scale model,
similar to what we are hoping to achieve, which used a 3D Darcy model in a hemispherical domain
to model the maternal blood [12]. In somewhat of a contrast, Lecarpentier et al. made comparison
between two models of the flow that they had developed: one using the Brinkman equations, and
one given by the full Navier-Stokes equations [30]. Although there are many mathematical biological
applications that take into account elastic effects on geometries (e.g. [33]), we are currently unaware of
any models that take into account the elasticity of a realistic geometry on the placenta-scale, although
some do include elastic effects on smaller placental components (e.g. [18]). This is something we plan
to incorporate in our biophysical computational model.

As described in [14], we may utilise some form of FSI to accurately model the interaction between
the fluid in the IVS, and as well as the surrounding elastic tissue to capture the placental pump
phenomenon described in [15]. FSI problems are, perhaps obviously by their name, associated with the
interaction between fluids and solids (or structures). These problems arise in many areas including the
aeroelasticity of aircraft wings [37], the playing of reeded woodwind instruments [34], the construction
of bridges [38], and the haemodynamics of animals [19]. In terms of numerical simulations of fluid-
structure interaction problems, there are generally two approaches: the monolithic approach, and the
partitioned approach. The former treats the fluid and structure dynamics in the same mathematical
framework and is solved simultaneously by a unified algorithm, and the latter treats the fluid and
structure as two separate fields — which can be solved separately with their own meshes and numerical
algorithms — and can be useful when using ‘legacy’ codes that have already been validated for solving
many complicated problems [23].

In addition to FSI, we may use techniques from moving meshes to change how the nodes in our
discretised domain move [4]. An Arbitrary Lagrangian-Eulerian (ALE) description may also be utilised
to easily map between the material, spatial, and reference frames of reference when quantities are
evolving in moving mesh methods [16].

Processes which occur on the microscopic scale in a physical system can have macroscopic effects
on the larger scale behaviour we want to understand; multiscale modelling can be vital in solving
such problems computationally primarily due to a scale gap [9] where, without the use of multiscale
techniques, computational power may be vastly wasted. Multiscale problems are usually formulated by
introducing a macroscale variable that is separated from the microscale variable by some small constant
as demonstrated in [32]; O’Dea et al. continue to show how multiscale modelling is used in a biological
setting to inform the dynamics of macroscale tissue growth from the microscale structure of biological
tissue, and also detail how they used a Darcy-type equation governing flow through a porous medium.

The structure for the remainder of the report is as follows. In Section 1.2 we will introduce the
idea of Galerkin methods, and in Section 1.3 some notes on what may be useful modelling-wise. In
Section 1.4 we will fully derive both a continuous and discontinuous Galerkin finite element method
discretisation for Poisson’s equation, and we will further note the discretisations for Stokes flow; we
will end this section by presenting some specific a priori and a posteriori error bounds and discuss how
these may be utilised with smoothness indicators in hp-adaptivity. In Section 1.6 we briefly outline
how a typical OOP FEM code may be structured along with a discussion of some key features, and
then conclude the report with some numerical experiments — including simulations in 1D and 2D,
simulations of Poisson’s equation and Stokes flow, and using continuous and discontinuous Galerkin
FEMs. Section 2 contains not-so-academic details about future targets for this project.

1.2 Continuous and Discontinuous Galerkin Finite Element Methods

Finite element methods first appeared with Courant in 1942 where they used the idea of minimising a
functional using linear approximations over subregions, which is fundamental in the form required for
deriving a finite element method; it wasn’t until Clough in 1960 when the method was given its name,
describing how the methods were used for work on flexibility in wing structures at the Boeing Company
[22]. Gupta and Meek in [22] also credit the initial development of FEMs to papers by Argyris, Turner
et al., and Zienkiewicz.
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Since FEMs’ initial work, many different flavours of FEM have been developed including CGFEMs
and DGFEMs as described in Section 1.1, but also methods such as extended finite element methods
(XFEMs), cut finite element methods (CutFEMs), and hpk-FEMs — some of which can be combined
to make very powerful methods. All methods have in common that they roughly try to discretise the
domain and solve many sub-problems using some discretised variational form of the original problem.
In this report we consider the crossover between CGFEMs and DGFEMs with hp-FEMs.

Although we may ultimately end up using the DGFEM formulation for simulations, it is still useful
to study the CGFEM formulation: firstly because the derivation is somewhat easier in that we do not
have to derive extra terms for inter-element face contributions; secondly because boundary conditions
can be applied strongly, which can simplify both the mathematical derivation and the programming
implementation; and thirdly because the literature for CGFEM is more expansive. However we note
that CGFEM can exhibit numerical instabilities in the form of spurious oscillations in the vicinity
of sharp features of the analytical solution [10]. On the other hand DGFEMs can be very useful in
solving on complicated meshes with for instance hanging nodes, as well as their close relationship with
FVMs in CFD.

1.3 Some PDE Problems

The incompressible Navier-Stokes equations are currently the best-known model of time-dependent,
viscous, incompressible, Newtonian fluid flow. We want to find the velocity, u, and pressure, p, subject
to:

ρ
∂u

∂t
+ ρ∇(u⊗ u)−∇ · σ = ρf , in Ω, (1a)

∇ · u = 0, in Ω, (1b)

µ(∇u + (∇u)>)− pI = σ, in Ω, (1c)

u = gD, on ΓD 6= {Ω, ∅}, (1d)

µ∇u : n− pn = 0, on ΓN = ΓD \ ΓD, (1e)

where ρ is the constant density of the fluid, µ is the dynamic viscosity, gD is some Dirichlet boundary
condition, and f is some body force acting on the fluid.

The details are omitted here, but in the limit of ρuL� µ, where L is some characteristic lengthscale,
one obtains Stokes flow, which can be used to describe so-called creeping flow. Stokes flow has
successfully been used to model, among other things, the flow of blood in the IVS at the pore scale
[28]. For this project we intend to use Stokes flow as a stepping stone in which to ultimately study
other models of flow in the IVS.

Stokes flow implicitly contains a ∇2u diffusion term (arising from substituting the stress tensor, σ,
in Equation (1c)). It was therefore useful to study the Poisson equation as an initial problem as a
stepping stone to study Stokes flow. On a separate topic, there are also occasions where the Poisson
equation itself my be directly used later in the project: for example in the mesh-smoothing techniques
used in ALE [16].

1.4 PDE Discretisation

For this discretisation section, we first make some definitions. Firstly, the domain in which we will seek
solutions will be denoted Ω ⊂ Rd for d = 1, 2, 3. Secondly, we will denote Γ := ∂Ω as the boundary of
Ω, and we further split this boundary into ΓD and ΓN to represent the parts of the boundary with
Dirichlet and Neumann boundary data, respectively; we note that Γ = ΓD ∪ ΓN and ∅ = ΓD ∩ ΓN .
Finally, we define n to be the standard outward normal to a given surface, S.
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1.4.1 Discretising the Poisson Problem

In this section we consider the Poisson problem in the open and bounded domain Ω ⊂ Rd, for d = 1, 2, 3.
For this problem, we have: find u(x) such that

−∇2u = f in Ω, (2a)

u = gD on ΓD 6= ∅, (2b)

∇u · n = gN on ΓN := ∂Ω \ ΓD, (2c)

where f, gD, gN are functions of the spatial coordinates, and n is the usual outward normal on ΓN .
From Equations (2) we perform the standard technique in finite element methods of multiplying

Equation (2a) by a test function, v, that does not necessarily live in the same space as the solution, u,
and integrate over the domain. This gives us

−
∫

Ω
∇2uv dx =

∫
Ω
fv dx.

Recall integration by parts in multiple dimensions (or rather Green’s first identity) as∫
Ω
∇2uv dx =

∫
Γ
v∇u · n ds−

∫
Ω
∇u · ∇v dx (3)

where we have assumed that u and v are absolutely continuous. The integration by parts formula in
Equation (3) allows us to write the second-order term as∫

ΓD

v∇u · n ds+

∫
ΓN

gNv ds−
∫

Ω
∇u · ∇v dx, (4)

where we have also split up the boundary integrals over Γ into ΓD and ΓN for the Dirichlet and
Neumann segments respectively, and substituted the Neumann boundary data if ΓN 6= ∅.

We now introduce a function space in which we seek our solution. Here we strongly imposed the
boundary conditions, and therefore define the space we seek solutions within as

V := {v ∈ H1(Ω) : v|ΓD
= gD}.

We also further introduce our test space to be a similar space, but instead with zero Dirichlet
boundary conditions:

V 0 := {v ∈ H1(Ω) : v|ΓD
= 0},

which ultimately makes the first term in Equation (4) vanish when v ∈ V 0.
Our original Poisson problem in Equations (2) can therefore be written equivalently in a weak form:

find u ∈ V such that ∫
ΓN

gN ds+

∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx (5)

for all v ∈ V 0. Equivalence of both the original strong formulation and the weak formulation can be
shown using an argument similar to that presented in [29].

We note that the problem presented in Equation 5 is still infinite-dimensional, which is not usable
for solving numerically on a computer. Therefore we first discretise our domain into a mesh, which
consists of non-overlapping elements (smaller shapes within the domain) for which the union of all
elements is the entire domain1. Depending upon how the domain is created, these shapes may be
restricted to triangles or squares in 2D, or tetrahedra or cubes in 3D, or may permit general polygons
or polyhedra. We denote our mesh as Th, which is made up of many elements κ ∈ Th. With correct

1This assumes that the boundary of the domain can be constructed by piecewise straight lines, although this can be
somewhat relaxed with more effort.
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handling, these elements can be general polygons; however, for our simulations in this report, all
simulations are performed either with intervals, or regular squares.

We define the following finite-dimensional space, in which we will ultimately seek solutions:

Vh := {v ∈ V : v|κ ∈ Pp(κ), κ ∈ Th \ ΓD}, (6)

where Pp(κ) is the set of polynomials of at most degree p on element κ. We similarly define our test
space to be

V 0
h := {v ∈ V 0 : v|κ ∈ Pp(κ), κ ∈ Th \ ΓD}. (7)

Our finite-dimensional problem, which we will refer to as the CGFEM formulation, is therefore the
following: find uh ∈ Vh such that∫

ΓN

gN ds+

∫
Ω
∇uh · ∇vh dx =

∫
Ω
fvh dx, (8)

for all v ∈ V 0
h . We stress here that the formulation is now finite-dimensional and can be approximated

using a computer.
As discussed in Section 1.1, DGFEMs exist and do not have the rigid assumption that interfaces

between element faces are continuous: they may instead be discontinuous. To derive a DGFEM
formulation for Equations 2, the first thing we do is to write the problem as a system of first-order
equations:

−∇ · s = f in Ω, (9a)

s = ∇u in Ω, (9b)

u = gD on ΓD 6= ∅, (9c)

∇u · n = gN on ΓN := ∂Ω \ ΓD, (9d)

where we have introduced a new variable, s. We multiply Equations (9a) and (9b) by two test functions,
v and τ , and integrate over each element in the mesh, κ ∈ Th, to obtain our weak formulation:∫

κ
s · τ dx = −

∫
κ
u∇ · τ dx+

∫
∂κ
unκ · τ ds, (10a)∫

κ
s · ∇v dx =

∫
κ
fv dx+

∫
∂κ

s · nκv ds. (10b)

For each element in our mesh, κ ∈ Th, we introduce some new discontinuous Galerkin vector spaces
for some maximum polynomial degree, p, in which we seek our solutions:

Vh := {v ∈ L2(Ω) : v|κ ∈ Pp(κ), κ ∈ Th \ ΓD},
Σh := {τ ∈ [L2(Ω)]2 : τ |κ ∈ Pp(κ), κ ∈ Th \ ΓD}.

The essence of creating a DGFEM is in choosing an approximation of the solution in the face
terms of the weak formulation, for which there are many choices (see [2]). The most general DGFEM
formulation is then: find uh ∈ Vh and sh ∈ Σh such that for all κ ∈ Th we have∫

κ
sh · τ h dx = −

∫
κ
uh∇ · τ h dx+

∫
∂κ
ûκnκ · τ h ds, (11a)∫

κ
sh · ∇vh dx =

∫
κ
fvh dx+

∫
∂κ

ŝκ · nκvh ds, (11b)

for all vh ∈ Vh and τ h ∈ Σh where the written numerical fluxes ûκ and ŝκ are approximations to u
and s, respectively, on the boundary of each element, κ.

We now introduce two operators that are defined on element faces: the average operator and the
jump operator, as given in [10]. Let u be a vector-valued function and p be a scalar-valued function.
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The average operator, which is defined on the face between two elements κi and κj , denoted as F ∈ FI ,
where FI denotes the set of interior faces between elements in Th, is given by

{{u}} :=
1

2
(u+

κi + u+
κj ),

{{p}} :=
1

2
(p+
κi + p+

κj ),

where u+
κi and p+

κi denote the trace values of u and p on element κi. We may similarly introduce the
jump operator as

JuK := u+
κi · nκi + u+

κj · nκj ,
JpK := p+

κinκi + p+
κjnκj ,

where nκi and nκj denote the outward normals to κi and κj , respectively, on F . In a similar way, we
may define FB to be the faces of elements in Th which lie on the boundary of the domain, such that
the faces of Th, F , satisfy F = FI ∪ FB and FI ∩ FB = ∅. The average and jump operators on these
boundary faces are defined as

{{u}} := u+
κi ,

{{p}} := p+
κi ,

JuK := u+
κi · nκi ,

JpK := p+
κinκi .

For the remainder of this report, we will only consider the interior penalty method originally suggested
by Douglas and Dupont in [17], and specifically we will consider only the symmetric case. This amounts
to choosing

ûκ :=

{
{{uh}} on F ∈ FI ,
gD on F ∈ FB,

ŝκ :=

{
{{∇uh}} − σ(JuhK) on F ∈ FI ,
∇uh − σ(uh − gD)nκi on F ∈ FB,

where σ is a penalisation parameter specific to the Poisson problem that scales like O(p2/h).
Once we substitute sh = ∇uh from above and add Equations (11), we recover the DGFEM formulation:

Find uh ∈ Vh such that:∫
Ω
∇uh · ∇vh dx−

∫
F

({{∇uh}} · JvhK + {{∇vh}} · JuhK− σJuhK · JvhK) ds

=

∫
Ω
fvh dx+

∫
FB

gD(σvh −∇vh · n) ds,

for all vh ∈ Vh, where we also note that here that derivatives denoted by ∇ denote the broken gradient
(N.B. [10]).

1.4.2 Discretising Stokes Flow

We now consider Stokes Flow in the open and bounded domain Ω ⊂ Rd, for d = 2, 3. For this problem,
we have: find u and p such that

−µ∇2u +∇p = f in Ω, (12a)

∇ · u = 0 in Ω, (12b)

u = gD on ΓD 6= ∅, (12c)

∇u · n = gN on ΓN := ∂Ω \ ΓD, (12d)
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where f ,gD,gN are functions of the spatial coordinates, µ is the dynamic viscosity, and n is the usual
outward normal on ΓN .

We omit the full details of the derivation of the discretisation, but note the full details are outlined
in [29]; we just note the discretisation here for use with the final simulations in Section 1.6.2. We first
define

A(u,v) := µ

∫
Ω
∇u : ∇v dx, (13)

B(v, p) :=

∫
Ω
p∇ · v dx, (14)

L(v) :=

∫
Ω
fv dx, (15)

and subsequently define

A((u, p), (v, q)) := A(u,v)−B(v, p) +B(u, q). (16)

We also note here the finite element spaces in which we seek our solutions, given for the velocity and
pressure, respectively given by:

Vh := {v ∈ L2(Ω)d : v|κ ∈ Pp(κ)d, κ ∈ Th}, (17)

Qh := {q ∈ L2(Ω) : q|κ ∈ Pp−1(κ), κ ∈ Th}, (18)

where we note that the polynomial degree of the pressure space is chosen at one lower than the velocity
space in order to ensure that the Babus̆ka and Brezzi inf-sup constant is not zero [20].

Using similar arguments to those in Section 1.4.1, we may now easily give the continuous Galerkin
discretisation of Stokes in Equation 12 to be: find (uh, ph) ∈ Vh ×Qh such that

A((uh, ph), (vh, qh)) = L(vh), (19)

for all (vh, qh) ∈ Vh ×Qh.
For the DGFEM formulation of the Stokes problem, as stated in [24], we redefine A(u,v) and B(v, p)

to

Ã(u,v) := µ

∫
Ω
∇u : ∇v dx−

∫
F

({{µ∇v}} : JuK + {{µ∇u}} : JvK) ds+ µ

∫
F
γh−1JuK : JvK dx,

B̃(v, q) := −
∫

Ω
q∇ · v dx +

∫
F
{{q}}JvK ds,

where we note that the jump operators on vectors, such as JuK, are implicitly two-dimensional.
Just like in the continuous version, we can add these equations together to give a single equation, so

we can therefore define Ã((u, p), (v, q)) again as

Ã((u, p), (v, q)) := Ã(u,v)− B̃(v, p) + B̃(u, q), (20)

and we therefore have our full DGFEM formulation: find (uh, ph) ∈ Vh ×Qh such that

Ã((uh, ph), (vh, qh)) = L(vh), (21)

for all (vh, qh) ∈ Vh ×Qh.

1.5 Error Control and hp-adaptivity

A priori error bounds for specific model problems when solved with FEMs are known (e.g. [1][11][21])
and take the form

‖u− uh‖ ≤ E1(h, p, u),
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where u is the exact solution, uh is the FEM approximation of the solution, and E1 is some function of
h, p, and u. Such a bound is given for 1D CGFEM in [35]:

E1(h, p, u) = C
hmin(p,k)

pk
‖u‖Hk(0,1), (22)

where C > 0 is some constant, k is an integer that roughly relates to the smoothness of u 2, and we
note that although the bound is on the interval (0, 1) this can be easily mapped to any other interval
in 1D.

Throughout this report we will only consider DEs which we know the solution to, which therefore
allows us to compute exact a priori bounds if wanted. However in practice this is of course not the
case and, although it gives us an insight into how our errors may converge when refining, it is of little
practical use. We therefore need some other robust bounds to control the errors induced due to our
FEM approximation.

Opposed to a prior error bounds, a posteriori error bounds exist (e.g. [24][31][39]) and take the form

‖u− uh‖ ≤ E2(h, p, uh),

where, crucially, E2 depends upon the approximate solution, uh, not the unknown exact solution, u. Not
only does this give us access to bounds on our error from the true solution without ever knowing the
true solution, it also paves the way for automatic local hp-adaptivity. The forms of these a posteriori
error bounds can ultimately be quite complicated; we therefore present in this section the idea of how
they are used in 1D and present references for use in higher dimensions.
hp-adaptivity aims to combine the benefits of exponential convergence rates of p-adaptivity and

the benefits of increasing local resolution around non-smooth areas of the domain with h-adaptivity;
p-adaptivity involves enriching the polynomial degree locally in areas of high estimated error, and
h-adaptivity involves subdividing elements in areas of high estimated error. Two key ingredients are
generally required for such an approach:

1. Element-wise error indicators: to tell us where the approximation is worst;

2. A smoothness indicator: to tell us where the approximation is most ”smooth”.

For the first key ingredient, in 1D CGFEMs for the Poisson equation, we may easily derive an a
posteriori error bound as shown in [6]. The Poisson problem we will consider until the end of this short
section takes the form

− εu′′(x) + c(x)u(x) = f(x), on x ∈ Ω, (23)

with ε = 1, c ≡ 0, f(x) = π cos(πx), and vanishing Dirichlet boundary conditions. We can derive a
residual-based error bound and is written as

‖u− uh‖E ≤

√√√√ N∑
i=1

1

εpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥2

L2(xi−1,xi)
, (24)

where the residual is defined as R(uh)|xi−1,xi := f + εu′′ − cu,∀i, pi is the polynomial degree on the
ith element, wi := (xi − x)(x − xi−1), and the energy norm is defined as the usual bilinear form
‖u‖E := ε‖u′‖L2(Ω) + ‖

√
cu‖L2(Ω). We note the bound is very similar to [40] except Wihler does not

assume that the projection of f to be equal to the function itself.
By taking the term within the sum of Equation (24),

ηκi(uh) :=
1√

εpi(pi + 1)

∥∥∥w1/2
i R(uh)

∥∥∥
L2(xi−1,xi)

, (25)

2k corresponds to the Hk(0, 1) space that u lives in, so higher k is a smoother function and lower k is a less-smooth
function. Note that we need sufficient smoothness for higher p to give us any ‘benefit’ in the numerator.
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we have what is known as a local error indicator; whilst we cannot say that ηκi is an upper bound of
the error on an individual element, κi, we can use the indicator to approximately calculate where the
error in the solution is largest. We may then use adaptive strategies to refine locally depending upon
the size of the indicator in certain locations on the mesh.

For 1D DGFEMs, there exists a similar residual-based error bound as noted in [8]:

ηκi(uh) := h2
κi‖R(uh)‖L2(κi)

+ hκ‖J(uh)‖L2(∂κi)
, (26)

where J(uh) := Jεu′hK denotes the so-called jump residual between κi and its surrounding elements.
This bound can be used again as an error indicator as suggested above. In fact, you can give this a try
yourself with an interactive example using Blakey FEM: https://fem.blakey.family/. The code
at this URL performs 5 steps of hp-adaptivity with a DGFEM in 1D for given ε, c(x), f(x), and a
starting number of elements (N).

Similar a posteriori error bounds and resulting local error indicators can be generalised to higher
dimensions for various model problems (for example [8][26][36]).

The second key ingredient for automatic hp-adaptivity is a smoothness indicator, which tells us
whether to refine h or p in a given adaptive step. In 1D we can refer once again to [40] for the
smoothness indicator given in Equation (27), which is close to 1 when uh is smooth and is close to 0
when u is non-smooth. We note that smoothness indicators may take many forms and can be derived
for 1D and higher [25].

FK [uh] :=

‖uh‖2∞(κ)

[
coth(1)

(
h−1
κ ‖uh‖

2
L2(κ) + hκ |uh|2H1(κ)

)]−1
if uh 6≡ 0,

1 if uh ≡ 0.
(27)

hp-adaptivity will indeed help in this project’s work by sparing computational resources in areas
where it is not needed. As shown in the following section, the degrees of freedom of the computations
(directly related to how long a computation will take) can be greatly reduced by using hp-adaptivity.

1.6 Numerics

In this section we present some simple numerics with various boundary conditions. We then use a
CGFEM and DGFEM method for a Poisson problem, as well as CGFEM for a Stokes problem, in a
mixture of 1D and 2D domains.

1.6.1 Design of an OOP Code

Many readily-available FEM solvers already exist such as deal.II, FEniCS, and DUNE. There is no
single FEM solver package that can perform everything that the user may want: for example deal.II
can perform h, p, and hp-adaptivity whilst FEniCs can only perform h-adaptivity. However deal.II
cannot use elements that are not intervals, squares, or cubes; in contrast, FEniCS can have triangular
and tetrahedral elements. This is just due to the priorities of the problems the authors of these
packages wanted to solve. We therefore have opted to use an in-house developed software package
called AptoFEM for this project, which allows us to have an in-depth understanding of the structure
of the software and easily add features ourselves if the needed arises.

As part of Blakey’s Master’s dissertation, there was a simple solver created — titled Blakey FEM
— that can perform hp-adaptive simulations in 1D on a specific form of one linear and one nonlinear
problem with CGFEM [6]. This code has since been further extended to include DGFEM [5], and has
been ported from C++ to Fortran [7]. For the efficiency of an FEM solver it is important that at least
core of an FEM code is written in a low level language such as Fortran or C++, since these methods can
be very computationally demanding and ideally no resource would go wasted on higher-level languages
such as Java or Delphi.

With FEMs being finite-dimensional, the solving of them amounts to solving a linear system.
Therefore it is vital that accurate and efficient methods for solving linear systems is incorporated.
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Figure 2: Comparison of three different simulations of a Poisson problem in 1D using Blakey FEM. The plots
have been generated by sampling 10 linearly-spaced points per element and plotting using Matplotlib.

Depending upon the sparsity of the resulting matrix different algorithms can be used such as the
Thomas algorithm for solving tridiagonal matrices exactly, or GMRES for general matrices iteratively.

Another key component of FEM codes comes in the approximation of the integrals that arise from
the variational form of the problem; in many FEM codes, including Blakey FEM and AptoFEM, the
quadrature formula for approximating these integrals is Gauss-Legendre. Gauss-Legendre quadrature
is the de facto quadrature formula because the quadrature is flexible enough to allow us to specify
the order to which we want to solve (and therefore not wasting computational resources on simple
problems), and also due to its optimality in the order of the polynomials that it can integrate exactly.

In terms of the design of an object-oriented programming (OOP) code, Blakey FEM makes extensive
use of inheritance and polymorphism to make the code easily extensible and with minimal redundancy.
Please see [6] for full details on how Blakey FEM is implementation.

1.6.2 Some Numerical Experiments

Here, we will present a short comparison of simulations with variable p in 1D with Blakey FEM and
then move onto only comparing convergence rates in AptoFEM.

Figure 2 shows a comparison between three 1D Poisson problem simulations performed in Blakey
FEM, where we have our forcing function f = π cos(πx), domain [0, 1], and vanishing Dirichlet boundary
conditions. In Figure 2a we have 4 equal-sized elements using linear (p = 1) basis functions which give
us a crude approximation to the exact solution. We see that the approximation improves for Figures
2b and 2c but these are achieved in two very different ways: Figure 2b achieves this by doubling
the number of elements (h-refinement), whereas Figure 2c achieves this by everywhere increasing the
polynomial degree by 1 (p-refinement). It’s important to note here that the degrees of freedom (DoF)
for solving are roughly similar for these latter two figures, yet by the ‘eyeball norm’ the solution with
quadratic basis functions approximates the solution better. However it is also important to note that a
more accurate quadrature formula will need to be employed for basis functions with a higher degree,
which itself will be more costly computationally.

We can also run similar simulations using DGFEM, as shown in Figure 3. We notice in particular
from Figure 3b that the solution is not continuous between elements. Figure 4 shows further simulations
in 2D using AptoFEM where the forcing function is now f = 2π2 sin(πx) sin(πy) and domain is [0, 1]2

and we keep zero Dirichlet boundary conditions.
We may apply h-refinement globally on our mesh to get a better approximation of the solution. By

the a priori bound given in Equation (22) we have a rough idea of how this may converge: for a ‘smooth
enough’ function (k large) with linear approximating polynomials we would have convergence of the
errors against DoFs that looks like O(h) in the energy norm. For higher-order polynomials we would
essentially see order O(hp). As shown in Figure 5 we see this convergence behaviour for p = 1, 2, 3 for
the 1D Poisson problem using Blakey FEM; note that the estimator and error are indistinguishable
from one another.

As discussed in [40][6] we can recover exponential convergence rates with p-refinement, provided that
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Figure 3: Comparison of three different simulations of a Poisson problem in 1D using Blakey FEM. The plots
have been generated by sampling 10 linearly-spaced points per element and plotting using Matplotlib.

(a) Poisson problem from Equation (2) with ×4 × 4 =
16 square elements, solved with the AptoFEM
CGFEM solver with linear basis functions.

(b) Poisson problem from Equation (2) with ×8 × 8 =
64 square elements, solved with the AptoFEM
CGFEM solver with linear basis functions.

Figure 4: Comparison of two different simulations of a Poisson problem in 2D using AptoFEM. The plots have
been generated using ParaView.
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(a) Global h-refinement with p = 1.
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(c) Global h-refinement with p = 3.

Figure 5: Convergence of Poisson problem from Equation (2) in 1D with CGFEM with varying p.
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the true solution is ‘smooth enough’ — this is defined more formally through the use of a smoothness
indicator, as given in 1D earlier in Equation (27). There are problems that don’t fit the criteria for
being ‘smooth enough’ but can still recover these exponential convergence rates by using hp-refinement,
where we refine in h when we aren’t ‘smooth enough’, and otherwise refine in p. We note that these
refinement steps do not have to be applied everywhere and can be performed element-wise. Loosely
speaking, Blakey FEM’s hp-adaptive code is created with the following steps, similarly to the steps
outlined in [8]:

1. Solve

• Solve the original FEM problem ’as usual’ with a given mesh and polynomial degree;

2. Estimate

• Estimate the error on every element using local error indicators, for example the indicators
given in Equation (26);

3. Mark

• Use some strategy to make those with a large enough error for refinement, for example by
marking all those that are above 66.7% of the maximum estimated error;

4. Decide

• Use some type of smoothness indicator to decide whether to h- or p-refine on each marked
element, for example by using Equation (27) in 1D and p refining those elements for which
the smoothness indicator is greater than 0.5;

5. Refine

• Apply either h- or p-refinement to each marked element individually, depending upon what
has been decided above.

Using this process, we have five refinement/adaptivity strategies: Global h-refinement, h-adaptivity,
global p-refinement, p-adaptivity, and hp-adaptivity. We layout convergence plots for two contrasting
problems: one for the Poisson problem in Equation (2) in 1D shown in Figure 7, and a boundary layer
problem in 1D which yields a solution with a sharp gradient at the boundaries (see [40, Example 2]) in
Figure 8. This problem solves the following differential equation:

−εu′′ + u = 1, in (0, 1), (28a)

u = 0, on {0, 1}, (28b)

where ε = 10−4 and permits exact solution

u(x) = − exp(x/
√
ε)

exp(1/
√
ε) + 1

− exp(−x/
√
ε) exp(1/

√
ε)

exp(1/
√
ε) + 1

+ 1. (29)

Some example solutions of this boundary layer problem is shown in Figure 6. Both the Poisson and
boundary layer problems are plotted with the exact error in the energy norm as well as the a posteriori
bound found in Equation (24).

Figure 7 shows five plots for each of the refinement/adaptivity strategies outlined above. Although
the plots for global h-refinement and h-adaptivity look very similar, we note that for h-adaptivity that
steps are taken more cautiously: in that the convergence rates follow roughly the same trajectory,
but the h-adaptivity plot increases by a small number of DoFs with each iteration. We actually see
something very similar between the p-refinement and p-adaptivity in that with the same number degrees
of freedom the error is roughly similar, although the p-adaptivity simulation takes more cautious
steps. We further note that there is not much difference between the plot for p-adaptivity and for
hp-adaptivity: in fact this is because the solution to this Poisson problem is very smooth, and the
hp-adaptive algorithm — although not recorded here — actually opts to refine p at every step rather
than h.
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Figure 6: Comparison of three different simulations of the boundary layer problem in Equation (28) in 1D using
Blakey FEM. The plots have been generated by sampling 10 linearly-spaced points per element and
plotting using Matplotlib.

Contrastingly, Figure 8 shows convergence plots for the 1D boundary layer problem given in Equation
(28) with zero Dirichlet boundary conditions; this example is contrasting due to the sharp gradient
of the solution near the boundaries, unlike the very smooth solution of the Poisson problem. Both
the global h-refinement and h-adaptivity begin with the error indicator not being tight on the actual
error for earlier simulations, but they soon become tight. The actual convergence of the two is very
different: for 20 DoF the error is about 10 times smaller for h-adaptivity — this is likely because
the h-refinement will be taking place near the boundaries where the refinement is needed, and not
wasting resources refining in the centre of the domain. The global p-refinement and p-adaptivity give
similar results, but does appear to give exponential convergence. The hp-adaptivity strategy is the best
strategy here: although plotted for a higher number of DoFs, we note that around 20 DoFs the error
is about equal with that of the h-adaptivity plot, and for around 40 DoFs performs about 10 times
better than p-refinement and p-adaptivity. The convergence here is also very clearly exponential and
converging faster than the already exponentially converging p-refinement could have achieved alone.

We now take a two-fold step from the CGFEM 1D Poisson problem: We can take a 2D Poisson
problem from Equation (2) and can use AptoFEM with DGFEM to run simulations for each of the five
refinement/adaptivity strategies to produce Figure 9. We note that there are some shared similarities
with Figure 2, which is the 1D Poisson problem using CGFEM; in particular, the plots for the energy
error and DG error for global h-refinement and h-adaptivity on both figures convergence with the same
O(h), the difference being that the error estimator is not as tight in the DG case. Global p-refinement
and p-adaptivity also give exponential convergence rates in both cases. The p-adaptive plot here seems
to increase in error after around 40 DoFs — some investigation would need to be needed to determine
the cause of this, as this is not yet at machine precision (about 10−16) but it may be associated with
that. Interestingly, the hp-adaptivity does not perform as well as may be expected in the 2D case;
however this may not be quite as surprisingly as it first seems, as the error estimators and smoothness
indicators are different between the 1D and 2D simulations. Perhaps for this problem there is a better
set of indicators to do this process more efficiently.

We present some final simulations here for a Stokes problem from (12) in 2D. We choose to solve
over an L-shaped domain in the region [−1, 1]2 \ [0, 1]× [−1, 0]. We solve with µ = 1 set up such that
we have exact solution:

u =

[
−(y cos(y) + sin(y))ex

y sin(y)ex

]
, (30a)

p = 2ex sin(y). (30b)

To keep the pressure uniquely defined we prescribe a Neumann boundary condition on the side with
x = 1 and Dirichlet boundary conditions everywhere else. Figure 10 shows two different simulations for
this Stokes problem with a different number of elements, where the contours on the mesh represent the
values of the solution pressure, and the magnitude and direction of the glyphs represent the solution
flow velocity.
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(d) p-adaptivity.
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Figure 7: Convergence of Poisson problem from Equation (2) in 1D using CGFEM with various refine-
ment/adaptivity strategies.
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(c) Global p-refinement.
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Figure 8: Convergence of boundary layer problem from Equation (28) in 1D using CGFEM with various
refinement/adaptivity strategies.
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Figure 9: Convergence of Poisson problem from Equation (2) in 2D using DGFEM in AptoFEM with various
refinement/adaptivity strategies.
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(a) Stokes problem from Equation (12) with 8×8−4×
4 = 48 square elements, solved with the AptoFEM
CGFEM solver with quadratic basis functions in
space and linear basis functions in pressure.

(b) Stokes problem from Equation (12) with 16×16−8×
8 = 192 square elements, solved with the AptoFEM
CGFEM solver with quadratic basis functions in
space and linear basis functions in pressure.

Figure 10: Comparison of two different simulations of a Poisson problem in 2D using AptoFEM. The plots
have been generated using ParaView. Note that the velocity plots here have been linearly interpolated
between nodal values and therefore may not exact represent the velocity calculated.

1.7 Overview of Work (so far)

In this report we have outlined what we are aiming towards with this project — namely creating a
biophysical computational model of the maternal blood flow in the IVS of the human placenta — and
provided some relevant background literature on the biology, modelling, and numerics required. We
then introduced the continuous and discontinuous Galerkin methods, followed by a full derivation of
the discretisation for both methods for Poisson’s equation; we noted the discretisations for Stokes
flow, and discussed the use of error indicators and smoothness indicators and how they are useful in
hp-adaptivity. We ended by describing a typical layout for an FEM code and presented some numerical
experiments that mixed together CGFEM and DGFEM, Poisson’s equations and Stokes flow, and 1D
and 2D simulations; we also investigated how the convergence rates of these simulations are affected by
five different types of refinement/adaptivity.

At the time of writing this report, I am hoping to imminently finish writing a DGFEM solver for
Stokes flow in AptoFEM, and then look to apply either Stokes or Darcy flow to a realistic geometry of
the placenta.

1.8 Future Work

By the end of my project, as discussed in Section 1.1, I hope to couple together techniques from FSI
and moving boundary techniques to capture the placental pump phenomenon, as well as potentially
incorporating multiscale modelling techniques for modelling the villous structures in the placenta. A
suitable model (e.g. Darcy flow) will be chosen for modelling flow within the IVS itself.

The placenta is very much a three-dimensional, time-dependent object, and I therefore expect that
simulations will have to take place in 3D with some form of time-stepping; as one might imagine, the
computational complexity of such numerics can be huge and as such we would most likely rely on
techniques such as hp-adaptivity to reduce the number of DoFs to a computable level. Additionally, I
would also like to obtain some realistic geometries in which to create meshes.

2 Plan for Coming 12 Months

Key targets for my project include:
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October 2021 Use a realistic model of time-independent flow within a realistic geometry;

January 2021 Use some form of time numerical scheme for time-dependent problems;

April 2021 Use some prescribed motion to move the domain/mesh of the problem in a specific
way;

July 2022 Use a FSI in to inform how the mesh motion should be done according to the placenta
contractions.

In terms of training, I believe that I have completed all compulsory training. At this moment, I do
no plan to undertake any more; however that may change if there is a specific need.

I’m quite lucky that COVID-19 has not directly affected my project too much. However, indirectly,
I’ve missed out on a lot of social life of being a PhD student as well as the natural academic discussions
that come from seeing people each day. In the past few months I’ve been fortunate enough to meet a
select few of the PhD students in the school, but I still feel as though my project may progress more
slowly than it would have until ‘normality’ returns. I think the technology for discussing complicated
mathematics has not yet been perfected and have found Microsoft Whiteboard a little difficult to
derive and discuss mathematics.
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