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T
his report highlights how we model maternal blood flow in the human placenta,
including simulations on representative sub- and whole-placenta geometries. We
also detail how we have made progress to validating our model with real-world MRI

data, modelled the transport of nutrients, and some details on future research plans.
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Figure 1: (A) Schematic showing flow of both maternal and fetal blood through the placenta. Fetal blood flows
through fetal vessels in the chorionic plate (left side of diagram) to the villous tree, and returns along
the same route. Maternal blood flows through spiral arteries into the intervillous space, and exits
via the draining veins. (B) Typical placental MRI image with the purple region corresponding to the
placental region of interest. Figure taken from [5], with an added label for a placentone.

1. Introduction

The placenta is a vital organ to which we were all once attached; without it, we would never have been
born. It is also one of the very few organs that can be held in one’s hand before the patient is deceased,
allowing for some perfusive experiments to be easily performed ex-vivo [1, 2]. Jensen and Chernyavsky
explain the role and modelling techniques of the placenta eloquently in [3]. In summary, the placenta
has two main purposes: to transport both oxygen and nutrients from mother to fetus, and conversely
transport carbon dioxide and waste products from fetus to mother. In human placentas, fetal blood
flows through trees consisting of many small villi that are submerged in maternal blood. Maternal
blood flows through the intervillous space (IVS), which contains the fetal villous tree; the fetal and
maternal blood avoid mixing with each other, and hence the delivery of dissolved nutrients in the blood
is transported by diffusion through the large surface area of the villous trees. Each tree is somewhat
localised into a region called a placentone, and each placentone may have some number of maternal
arteries and veins attached. Placentones are partially separated from neighbouring placentones by
septa (or walls), with perhaps 40 to 60 placentones making up the entire placenta [4]. Figure 1 (A)
illustrates the above description; Figure 1 (B) shows a typical magnetic resonance imaging (MRI) scan
of the placenta.

There has been little attempt at fully-coupled transport models describing both fetal and maternal
flow simultaneously [3]; instead, most current models consider either the fetal or maternal blood flow
in isolation. In this report we will also consider the maternal flow independently of the fetal flow, but
this is a clear limitation of current approaches.
On the fetal side, Plitman Mayo et al. and Kato, Oyen, and Burton have studied transport of

nutrients through an individual villi from maternal to fetal blood [6], with Kato, Oyen, and Burton
studying also the effect of actively contracting villous trees on maternal blood flow [7]. Clark et al.
created a multiscale model of the fetal villous tree and studied how transport of nutrients to fetal blood
was affected by changes to the structure of the tree [8].

On the maternal side, current models for flow mostly fall into two main categories: resolving the
villous tree precisely — for example through using real-world scan data to simulate on the geometry
exactly [9] — or homogenising the tree structure to model the maternal placental blood flow as porous
flow [9, 10, 11]. This involves treating the villous tree structure of the fetal vasculature as the ’solid
medium’ of some permeability, k, and allowing the maternal blood to flow with some resistance through
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the gaps in this medium. Whilst Lecarpentier et al. report that the resolved villous tree model gave
more realistic results than their homogenised model, they have to resort to solving the nonlinear
Navier-Stokes equations, which adds computational complexity, as well as the need to pre-process the
scanned images from which to create a computational domain [9]. Some authors that use homogenised
models make further modelling enhancements such as varying the permeability throughout the domain
[9, 10], or modelling the effect of artery widening before the maternal blood enters the IVS — and
what effect this has on placental development [12, 13, 14]. Exchange from mother to fetus is also an
important aspect to study, for which the flow of blood can be regarded as a vehicle in which to transport
nutrients and waste products; nutrients are transported from mother to fetus, and are what the fetus
needs to develop; waste products are also transported, but instead from fetus to mother. Chernyavsky
et al. have studied nutrient transport in the placenta from mother to fetus [15], gaining insight into
optimal position of veins to maximise transport [11]. Little is known about the rheology of blood in
the IVS when compared to blood rheology in narrow capillaries, which have been well-characterised
experimentally, and instead many authors model maternal blood flow in the IVS as incompressible [11].

As noted in [3], the described approaches for maternal haemodynamics are mostly restricted to single
placentones; Jensen and Chernyavsky further note that there is meaningful progress still to be made
at the whole-organ level, and with validating models against experimental data. Furthermore, the
exact number of veins in a placenta may vary from placenta-to-placenta, and even from placentone-to-
placentone; Chernyavsky, Jensen, and Leach quote estimates of 50–200 veins in the placenta [11]. A
standard model has been to allocate one artery and two veins to each artery, and therefore current
placental models fail to capture the effects of the marginal sinuses, which are not localised to single
placentones — instead located at where the basal plate meets the chorionic plate. The marginal sinus
is thought to form a larger outlet than other veins found in the placenta, and has been observed to be
surrounded by muscular walls, possibly to control blood flow.
The placental tissue lacks stiff supporting inner structures, and so a poroelastic description may

prove appropriate; however, most organ-scale models have assumed fixed tissue geometry [3]. Despite
this, there are many other biological applications that take into account elastic effects on geometries; for
instance in the lung Pybus et al. model precision-cut lung-slice stretching experiments, making use of
biomechanical properties to model the stretching [16], whilst Breen et al. develop a nonlinear elastic law
to be representative of the entire lung’s behaviour [17]. In addition to dynamics that could arise directly
from maternal and fetal blood flow, there are several other forms of movement, such as contractions
of the villous tree; Farley, Graham, and Smith document the properties of such phenomena [18], for
which Kato, Oyen, and Burton developed an active contraction model for the villous tree and discussed
how this may assist blood flow on both the maternal and fetal side [7]; however, the contractions
happen simultaneously everywhere, and assumes perfect bifurcations of villous branches. Another form
of contraction are the Braxton Hicks contractions, but these contractions involve the entire uterus
(as opposed to only the placenta contracting) [19]. However, the newly-documented ‘utero-placental
pump’ phenomenon is a contraction involving only the placenta [5]; Dellschaft et al. report that it has
been found experimentally that placental volume can reduce by up to 40% in these ‘utero-placental
pump’ contractions over a 10-minute period, resulting in a periodic ejection of blood from the IVS. The
utero-placental pump is a distinct phenomenon to the previously described contractions, and as such
should be modelled appropriately. The cause of these contractions is currently unknown, but there may
already exist mathematical models in the literature that could be utilised to model this behaviour. For
example, we may be able to reapply the work of Collis et al. [20] to accurately model the fluid-structure
interaction (FSI) that arises between the maternal blood in the IVS with the surrounding contracting
tissue, as well as their coupled nutrient transport problem.
FSI problems are, perhaps obviously by their name, associated with the interaction between fluids

and solids (or structures), and can arise in many areas including the aeroelasticity of aircraft wings
[21], the playing of reeded woodwind instruments [22], the construction of bridges [23], and the
haemodynamics of other animals [24]. In terms of numerical simulations of fluid-structure interaction
problems, there are generally two approaches: the monolithic approach, and the partitioned approach.
The former treats the fluid and structure dynamics in the same mathematical framework and is solved
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simultaneously by a unified algorithm, and the latter treats the fluid and structure as two separate
fields — which can be solved separately with their own meshes and numerical algorithms — and can
be useful when using ‘legacy’ codes that have already been validated for solving many complicated
problems [25]. The vast existing literature on these types of problems may be beneficial for application
to placental haemodynamics.
For the numerical simulations undertaken here, we employ finite element methods (FEMs) as our

numerical method of choice — and more specifically, we use discontinuous Galerkin finite element
methods (DGFEMs). Another option would have been to use continuous Galerkin finite element
methods (CGFEMs), which differ to DGFEMs by enforcing continuity between ‘elements’ in each
computational mesh. Loosely speaking, DGFEMs are somewhat of a hybrid between classical continuous
FEMs and finite volume methods (FVMs) [26], the latter being used extensively in computational
fluid dynamics (CFD) simulations. Cangiani et al. [26] highlight that DGFEMs are a great choice for
modelling in many practical settings due to their simple treatment of complicated geometries, ease of
adaptivity in both the local mesh subdivision and local polynomial degree, and availability of rigorous
error analysis tools. A posteriori tools are of particular practical interest for both error quantification
as well as automatic adaptivity strategies. DGFEMs in particular are highly parallelisable from
a computational viewpoint as elements only involve communication across element faces, allowing
some computations to take place independently of each other, i.e. in parallel [27]. We note that we
specifically use the DGFEM symmetric interior penalty method which is both consistent and stable
[28]. DGFEMs form a natural choice of method for our application due to the inherent complicated
placental geometries, as well as the use of local adaptivity for reducing computational efforts.
The problem we aim to address is concerned with diseases, such as fetal growth restriction (FGR)

and early-onset pre-eclampsia, which are thought to be associated with spiral arteries failing to widen
as they enter the IVS [12]; this is usually called ‘conversion’, for which Figure 2 from [12] illustrates the
widening effect in a normal pregnancy. However, the resolution of typical MRI scanners are too large
to accurately detect phenomena on the scale of a single artery (the MRI scanner used in [5, Tab. S3]
has a resolution of 2.5mm × 2.5mm × 6mm, but typical spiral artery openings are approximately
of size 2mm, or even smaller in pre-eclamptic cases, as shown in Figure 2). With current MRI
technology, accurate study of the maternal haemodynamics is deferred to mathematical modelling
and prediction; from which, we can further study the transport of vital nutrients such as oxygen, as
reduced nutrient transport has been shown to affect the development or cause premature death of
fetuses. We are therefore aiming to develop a mathematical model to simulate maternal blood flow and
nutrient transport phenomena at and below the resolution of typical MRI scanners, whilst including
accurate modelling of new phenomena such as the ‘utero-placental pump’, and validate our findings by
comparing the simulated dynamics on the organ-scale to real-world MRI data and ex-vivo perfusion
data. The hope is that this work will lead to better understanding of these diseases, and therefore
ultimately lead to improved pregnancy outcomes.
The structure for the remainder of this report is as follows. Section 2 we will model the flow of

maternal blood in the IVS, treating the IVS as a porous medium. In Section 3 we will undertake
simple simulations at the placentone- and placenta-level, and then in Section 4 use a new technique to
artificially recreate MRI data for comparison; in Sections 5.1–5.3 we will make short introduction to
work to follow on septal walls, nutrient transport, and variable permeability, respectively. We end this
report in Section 6 with some conclusions and a plan of what we hope to accomplish in the coming
year. We outline a summary of official training undertaken in Appendix A, and outline an approximate
work timeline for the next 12 months in Appendix B.

2. Blood Flow Modelling

We assume that the flow of maternal blood through this porous medium is governed by the incompressible
Darcy-Brinkman equations, similarly to Lecarpentier et al. in their Model 1 [9].

Poromechanics more generally describes the behaviour of fluids saturating porous media, where the
fluid may be a liquid or a gas, and the structure is generally solid [20] — although there are models
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Figure 2: Diagram illustrates, among other things, the central cavity (shown as CC) in relation to the villous
tree (shown in grey). A typical placentone is shown on the left and a pathological placentone is shown
on the right. Figure taken from [12].
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that make the structure permeable or elastic. The simplest example of steady, incompressible flow
through a porous medium is Darcy’s law. For an open and bounded domain Ω ⊂ Rd, for d = 2, 3,
Darcy’s law is given by

∇ · u = 0 in Ω, (1a)

u = −k

µ
∇p in Ω, (1b)

where u is the vector velocity field of the fluid, p is the scalar pressure field, k is permeability (simply,
it is related to the inverse of flow resistance [11]), and µ is the viscosity of the fluid. We have omitted
boundary conditions here for ease of presentation.

A modification to Darcy’s law was made by Brinkman in 1949. The modification is the addition of a
diffusion term, which captures additional inertial effects. We choose the Darcy-Brinkman model for
modelling the dynamics of maternal blood flow through the IVS.
Taking ∂Ω to denote the (d− 1)-dimensional boundary of Ω, we partition the boundary into two

disjoint sets: ΓD and ΓN , which respectively correspond to the regions where we will apply Dirichlet
and Neumann conditions; we note the restrictions that ΓD ̸= ∅ and ΓN := ∂Ω \ ΓD. Our dimensional
Darcy-Brinkman equations with zero external forcing are given by: find u and p such that

−µ∇2u+∇p+ µ̃α2u = 0 in Ω, (2a)

∇ · u = 0 in Ω, (2b)

u = gD on ΓD, (2c)

(∇u− pI) · n = gN on ΓN , (2d)

where gD and gN are functions of the spatial coordinates, µ is the dynamic viscosity, µ̃ is the effective
viscosity, α−2 = k is the permeability, and n is the usual outward unit normal on ΓN . We make a
simplification to this and take µ̃ := µ, [30, p. 216]. We nondimensionalise by picking the following
scalings: x → Lx, u → Uu, p → µU

L p; where L is the length-scale, and U is the velocity-scale, which
are dependent upon the problem. Note that we also appropriately nondimensionalise our domain Ω
and boundary conditions.
Making the simplification of µ = µ̃, setting α−2 = k, and substituting for the nondimensionalised

variables, we arrive at our nondimensional Darcy-Brinkman equations: find u and p such that

−∇2u+∇p+
1

Dr
u = 0 in Ω, (3a)

∇ · u = 0 in Ω, (3b)

u = gD on ΓD, (3c)

(∇u− pI) · n = gN on ΓN , (3d)

where Dr := k
L2 is the Darcy number that describes ratio of permeability to cross-sectional area, and

we again note that the domain, Ω, and boundary conditions, gD and gN, have been appropriately
scaled.

To arrive at a DGFEM discretisation of Equation (3), we first need to introduce some FEM-related
notation.

2.1. DGFEM Discretisation Notation

Finite element methods are one of many choices of numerical method for solving partial differential
equations (PDEs). Finite element methods first appeared with Courant in 1943, where the author used
the idea of minimising a functional using linear approximations over subregions, which is fundamental
to the formulation required for deriving a finite element method (FEM) [30]. It wasn’t until Clough
in 1960 when the method was given its name, describing how the methods could be used on models
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Figure 3: Diagram illustrates an example 3D mesh using tetrahedral elements. Example taken from
https://www.comsol.com/blogs/meshing-your-geometry-various-element-types/ on 2022-07-06 at 10:37
BST.

of wing structure flexibility at the Boeing Company [31]. The initial development of FEMs are also
credited by Gupta and Meek [32] to papers by Argyris [33], Turner et al. [34], and Zienkiewicz [35].
Since the initial work FEMs, many different flavours of FEMs have been developed including the

very popular continuous Galerkin FEMs (CGFEMs), discontinuous Galerkin FEMs (DGFEMs) which
this work exploits, as well as extended FEMs (XFEMs), cut FEMs (CutFEMs), and hp-FEMs — some
of which can be combined to make very powerful methods.

As previously mentioned, this work exploits DGFEMs to arrive at our approximated PDE solution;
we will not detail the full derivation of the symmetric interior penalty DGFEM method we employ, but
we will instead introduce the general idea and some DGFEM-specific notation — full details can be
found in [28].

We can take a PDE on some open and bounded domain, Ω ⊂ Rd, d ∈ {2, 3}; note that the following
notation does not restrict d to just these values, but these are what we will consider for our 2D and 3D
simulations. Following [26], we denote the mesh by Th, which we assume is a shape-regular partition of
Ω, which for simplicity consist of non-overlapping d-dimensional open simplicial elements, κ ∈ Th, such
that Ω̄ = ∪κ∈Th κ̄, where κ̄ denotes the closure of κ; an example of a discretised mesh using tetrahedra
is shown in Figure 3. Writing r ∈ N0 to denote the polynomial degree on a κ ∈ Th, we introduce the
finite element spaces

Vh := {v ∈ L2(Ω)d : v|κ ∈ Pr(κ)
d, κ ∈ Th}, (4)

Qh := {q ∈ L2(Ω) : q|κ ∈ Pr−1(κ), κ ∈ Th}, (5)

where Pr(κ) denotes the space of polynomials of total degree r on κ, and L2(Ω) denotes the space
of square-integrable functions on Ω. In words, this notation means that we are seeking numerical
approximations to our PDE that are discontinuous piecewise polynomials. We note here that the
spaces are chosen such that the pressure space, Qh, has one lower polynomial degree than the velocity
space, Vh; this ensures that the Babus̆ka and Brezzi inf-sup condition is satisfied [36].

As the choice of finite element spaces suggest, DGFEMs admit discontinuities in the approximation
of the PDE solution. The DGFEM symmetric interior penalty method we use allows this discontinuity
by introducing numerical flux functions, which represents approximations to the flux on the boundaries
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of elements; the ‘amount’ of discontinuity in the method is controlled by a carefully-chosen penalisation
parameter, σ. We introduce the notation to describe averages and jumps between adjacent edges.
There are two types of faces: interior faces and boundary faces; we write FI to denote interior faces
between two elements, and FB to denote exterior faces that lie on ∂Ω; we set F := FB ∪ FI and note
FB ∩ FI = ∅.
For both vector and scalar quantities (respectively, u and p), the average operator defined on an

interior face F = ∂κi ∩ ∂κj ∈ FI between two elements κi, κj ∈ Th, is given by

{{u}} :=
1

2
(u+

κi
+ u+

κj
),

{{p}} :=
1

2
(p+κi

+ p+κj
),

where u+
κi

and p+κi
denote the trace values of u and p from inside element κi, respectively. We may

similarly introduce the jump operator on an interior face, F ∈ FI , as

[[u]] := u+
κi

· nκi + u+
κj

· nκj ,

[[p]] := p+κi
nκi + p+κj

nκj ,

where nκi and nκj denote the outward unit normals to κi and κj , respectively, on F . Similarly, the
average and jump operators on boundary faces, F ∈ FB, where F ⊂ ∂κi, are defined as

{{u}} := u+
κi
,

{{p}} := p+κi
,

[[u]] := u+
κi

· nκi ,

[[p]] := p+κi
nκi .

For all simulations in this report, we implement our DGFEM solver using AptoFEM [42], which is a
general-purpose finite element method software that permits DGFEM spaces, use of a posteriori error
estimation, and interface to extremely fast third party matrix solving packages such as MUMPS [43].

2.2. DGFEM Darcy-Brinkman Discretisation

We take the nondimensionalised Darcy-Brinkman equations in Equation (3) and, by following a similar
procedure to [37, Sec. 2.4], we define:

A(u,v) :=

∫
Ω
∇u : ∇v dx−

∫
FI

({{∇v}} : [[u]] + {{∇u}} : [[v]]) ds+

∫
FI

σ[[u]] : [[v]] ds+
1

Dr

∫
Ω
u · v dx,

B(v, q) := −
∫
Ω
q∇ · v dx+

∫
F
{{q}}[[v]] ds,

L(v) :=

∫
Ω
fv dx−

∫
ΓN

gNv ds+

∫
ΓD

(gD ⊗ n) : ∇v ds+ σ

∫
ΓD

vgD ds+

∫
ΓD

qgD · nds,

where ΓD,ΓN ⊆ FB denote the boundary faces on the Dirichlet and Neumann boundaries, respectively,
u,v ∈ Vh and p, q ∈ Qh, and σ = 10 r2

h is the DGFEM symmetric interior penalty parameter taken
from [38] and is computed locally on an element with total degree r and mesh width h.
Our DGFEM discretisation of the nondimensional Darcy-Brinkman equations is given by: find

(uh, ph) ∈ Vh ×Qh such that

A(uh, ph)−B(vh, ph) +B(uh, qh) = L(vh), (6)

for all (vh, qh) ∈ Vh ×Qh.
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2.3. DGFEM A Posteriori Error Estimation and h-adaptivity

A large portion of the first-year report concentrated on how we may use a posteriori error estimation to
effectively refine our mesh where it is needed most [39]. In some of the following simulations, where it is
required, we will also use a posteriori error indicators to inform which elements to perform h-adaptivity
on, which increases the accuracy of our solution whilst keeping the degrees of freedom (DoFs) as low
as possible.

An a posteriori error bound takes the form

∥u− uh∥ ≤ E(h, r, uh),

where the error bound E depends only on the mesh size h, polynomial degree r, and the approximate
solution uh. This is different to a priori error bounds that instead depend on the exact solution, which
in practical settings is unknown. Not only does this give us access to bounds on the error without
knowing the true solution, it also paves the way for automatic local adaptivity. In this report we will
focus specifically on h-adaptivity, where refinement of elements is undertaken in response to the local
element error indicators.
Houston, Schötzau, and Wihler give an energy norm a posteriori error bound, from which we can

derive an elemental error indicator [37]; they present the analysis for the Stokes problem, which can
be easily modified for our Darcy-Brinkman problem from Equation (3) since the additional reaction
term contains no derivatives, therefore leaving most of the analysis unchanged. The elemental error
indicator for our Darcy-Brinkman problem is given by

η2κ =h2κ

∥∥∥∥∇2uh −∇ph −
1

Dr
uh

∥∥∥∥2
L2(κ)

+ ∥∇ · uh∥2L2(κ)

+

∥∥∥∥h 1
2

(
[[ph]] +

1

Dr
[[uh]]− [[∇uh]]

)∥∥∥∥2
L2(∂κ\∂Ω)

+
∥∥σ2[[uh]]

∥∥2
L2(∂κ)

,

for κ ∈ Th, where ∥·∥L2(·) denotes the L2-norm on some domain, and

h(x) =

{
min{hκ, hκ′}, x ∈ F ∈ FI , F = ∂κ ∩ ∂κ′,

hκ, x ∈ F ∈ FD, F ⊂ ∂κ,

where hκ and hκ′ are respectively the elemental diameters of elements κ and κ′. Whilst we cannot say
that ηκ is an upper bound of the error on each individual element, κ ∈ Th, we can use the indicator to
approximately calculate where the error in the solution is largest — and therefore we can automatically
decide regions of the mesh to concentrate our computational power, by refining the elements only in
those regions where the error indicator is large.

3. Blood Flow Simulations

3.1. Single Placentone

Taking inspiration from Lecarpentier et al. [9], we construct a simple 2D geometry of a single placentone,
formed of a rectangle with a semicircle placed on top. From [11] and [9] we know the diameter of a
normal full-term placentone is approximately 40mm and that the widths of the inlets and outlets are
approximately 2mm; we also choose to centre-align the inlet, and take the outlets with 8mm between
their centres and the side walls. This geometry corresponds to a lengthscale L = 0.04, and for a typical
healthy placenta we have U = 0.1m s−1 [12]. We add square pipes to the inlet and outlet locations to
represent the arteries and veins, governed only by Stokes flow; as there is no villous tree in present in
the arteries and veins, we split Ω into two parts: ΩD and ΩS , which respectively correspond to regions
where we solve Equation 3 and where we solve for Stokes flow. We set ΩS to contain the inflow and
outflow pipes shown at the bottom of Figure 4, and ΩD = Ω \ΩS ; practically-speaking, we simply ‘turn
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Figure 4: Diagram illustrates a simple 2D geometry for a single placentone. Blue shows inlet locations and red
shows outlet locations.

off’ the zeroth-order reaction term in this region to avoid the need for interfacial conditions between
these different PDEs. The motivation for this domain choice is that it roughly corresponds to a 2D
slice through a fetal villous tree [11]. A visual representation of the described dimensional geometry is
shown in Figure 4.

We take the average permeability from [9] to be k = 10−8; this gives Dr = 1.6× 105. We choose the
boundary conditions such that there is a Poiseuille parabolic inflow on the inlet — given as

gD(x) = − (x− xL)(x− xR)

(xM − xL)(xR − xM )
ŷ, (7)

where xL, xM , and xR respectively denote the left, midpoint, and right x-coordinates of the inlet, and
ŷ denotes the unit vector in the y-direction — zero outward flux (gN = 0), and no slip elsewhere
(gD = 0).

We employ a mesh with refinement near inlets and outlets, ultimately giving 113,448 elements.
We choose polynomial degree 2 in the velocity components and polynomial degree 1 in the pressure
component, giving the so-called Taylor-Hood elements, which are a stable combination of spaces [40,
sec. 8.8], and are one of the mostly widely-used elements for solving Stokes flow [41]. The choice of
parameters run with AptoFEM [42] gives the mesh and solution depicted in Figure 5.
The velocity field shown in Figure 5(b) shows that fluid moves from the centre inlet to the two

outlets either side. We note that the colouring is logarithmically-scaled, and therefore showing that we
roughly have an exponential slowdown of the fluid as it enters the IVS. The nondimensionalisation
in Equation (3) is independent of the choice of velocity-scale, U , so the earlier choice of U maps the
shown colour bar instead to range from 1× 10−6ms−1 to 1× 10−1ms−1 in dimensional units. The
results here agree with the results obtained by Lecarpentier et al. [9], and Chernyavsky, Jensen, and
Leach [11].

3.2. Whole Placenta

A short-coming of single placentone simulations such as those considered in Section 3.1, is that they do
not permit transport over septa, i.e. there is no flux of blood between neighbouring placentones, as
would be expected in the sub-chorionic space (SCS) [3]. As far as we are aware, there is no published
work that tackle simulations of maternal blood flow on the scale of the entire placenta; this section
demonstrates simulations of maternal blood flow in the intervillous space (IVS) on a representative 2D
slice of a whole human placenta.
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(a) (b)

Figure 5: (a) Mesh of the placentone simulation described in Section 3.1. (b) Plot showing logarithmic velocity
magnitude in colour (blue is slow, red is fast) with black streamlines and arrows for the placentone
simulation described in Section 3.1.

Serov et al. report that there are approximately 40–60 placentones in the entire placenta. We
estimated that a 2D planar cross-section could contain approximately 6 placentones (assuming a total
placental width of approximately 25 cm and placentone width of approximately 4 cm), so we designed
a domain to simulate flow in this geometry; we note that this assumes that this cross-section perfectly
intersects through the centre of all inlets and outlets, and note that 6 placentones is possibly an
underestimate of the true number found in a 2D slice. We assume that there are impermeable walls
(septa) of height 24mm and width 3mm between placentones, and that the placentones are located on
an arc of a circle of centre (xc, yc), which is constructed such that the horizontal extremities form a
45°-angle with the x-axis; we note that veins are not just found on the basal plate [44], so we have
added two corner outlets of widths 4mm to the geometry in order to model this additional drainage in
each of the corners. This described geometry is illustrated in Figure 6.

We run a simulation with the same boundary conditions as in Section 3.1, namely: parabolic Dirichlet
inflow on inlets, Neumann zero on outlets, and Dirichlet zero elsewhere; we note that the parabolic
inflow conditions are now normally-oriented, which is to say on the inlets we set

gD(x) = − (x− xL)(x− xR)

(xM − xL)(xR − xM )
cos(θn)x̂+

(x− xL)(x− xR)

(xM − xL)(xR − xM )
sin(θn)ŷ, (8)

where x̂ and ŷ respectively denote the unit vectors in the x- and y-directions, θn is the angle between
the outward normal and the horizontal. We also employ a similar mesh, that is again more refined near
inlets and outlets, giving 955,500 elements. We again choose polynomial degrees (2, 2, 1) respectively
for the two velocity components and pressure and implement using AptoFEM [42]. This choice of
parameters gives the mesh and solution depicted in Figure 7.
The velocity field in Figure 7(b) shows, like Figure 5(b), that fluid moves within placentones from

the inlets to the outlets; the difference now is that these simulations permit transport of fluid between
placentones through the sub-chorionic space (SCS). Although the movement between placentones is
slow (approximately on the order of 1% of the inlet fluid velocity), it may be an important aspect to
study in terms of nutrient transport. We also notice that the corner veins appear to be important in
draining fluid from the placenta, shown by the relatively large velocity magnitude there. Interestingly,
there appear to be stagnation points not only in the top-centre of the domain, but also in four other
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Figure 6: Diagram illustrates a simple 2D geometry for a slice of the whole placenta, consisting of 6 adjacent
placentones. Blue indicates inlet locations and red indicates outlet locations.
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(a)

(b)

Figure 7: (a) Mesh of the placenta simulation described in Section 3.2. (b) Plot showing logarithmic velocity
magnitude in colour (blue is slow, red is fast) with black streamlines and arrows for the placentone
simulation described in Section 3.2.

locations — above four of the placentones — indicated by the blue patches. We note that generally,
the fluid velocity is very slow throughout the entire domain, except near inlets and outlets. It is not
a given in physical placentas that every placentone has one artery and two veins, nor is it true that
every placentone has the same shape and size, but this is an assumption we make for these simple
simulations.
Concentrating on a single placentone in this wider whole placentone simulation, the fluid flow in

Figure 7(b) similar to the single placentone simulations in figure 5(b). This shows that the single
placentone simulations could indeed still be useful for understanding flow in the placenta.

4. MRI and Model Validation

It is, of course, important that we validate our model with real world measurements; we will not
provide such a validation in this section, but we will show some progress toward this. Other authors,
for example Lecarpentier et al., validated their model by comparing measurements of wall shear stress
[9]. We aim to validate our model by comparing synthetically generated MRI data from our simulated
flow data with real world MRI data for real placental flows, and ultimately hope to compare with
ex-vivo perfusion data (not covered in this report). First, we outline a brief overview of how an MRI
scanner makes its measurements.

4.1. An Introduction to MRI Measurements

4.1.1. Voxels

MRI makes use of voxels: 3D boxes, within which MRI makes its measurements. Within each voxel,
there are water molecules which each have a magnetic spin associated with them. It is the collective
magnetic spin within each voxel that MRI measures . For the simulations we are performing, the voxels
are approximately 2.5mm× 2.5mm× 6mm. An example voxel containing some particles is illustrated
in Figure 8.
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Figure 8: Diagram illustrates voxels and water molecules within.
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Figure 9: (a) Illustrates how gradients may be applied along a particular axis. (b) Illustrates how magnetic
spins may evolve through time as a magnetic gradient is applied.

4.1.2. Magnetic Gradients

Across each voxel, MRI applies magnetic gradients (low magnetic field at one side, high magnetic field
at the opposite side). Depending upon how much of a magnetic field each water molecule experiences,
the magnetic spin will change by different amounts. Axis-by-axis, we may apply a magnetic gradient,
i.e. we apply a magnetic gradient in the x-direction, then a gradient in the y-direction, then a gradient
in the z-direction; Figure 9(a) shows a gradient applied in the y-direction. As a magnetic gradient is
applied, the magnetic spins will begin to change over time. Illustrated in Figure 9(b) are the magnetic
spins of particles that are initially uniformly oriented, but because of the magnetic gradient are at
some later time are no longer uniformly oriented.

Magnetic gradients can be parametrised with the so-called b-value. Assuming the maximum magnetic
gradient is the same in each direction (∂G∂x = ∂G

∂y = ∂G
∂z ≡ G′), the magnitude is given as

|G′| =

√
b

γ2δ2(∆− δ/3)
,

where γ, δ, and ∆ are parameters specific to how the system is set up. Magnetic gradients are applied
in pulses through time; δ and ∆ are measured in units of time and respectively measure the length of
gradient pulses and length before the gradient changes direction (see Figure 10).

4.1.3. Phase

The phase for an individual molecule for each axis is calculated as

ϕj
x = γ

∫ T

0
G′x(t) dt,

ϕj
y = γ

∫ T

0
G′y(t) dt,
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Figure 10: Diagram illustrates how gradients are applied through time.

y

z

t = 0

y

z

t > 0

Figure 11: Diagram illustrates how water
molecules may move with the under-
lying velocity field; the grey arrows
indicate the direction and magnitude
of the velocity field.
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Figure 12: Diagram illustrates how the S-value
roughly corresponds to the average
phase for all water molecules.

ϕj
z = γ

∫ T

0
G′z(t) dt,

where (x(t), y(t), z(t)) gives the position of a molecule at time t, j is an index selecting each particle,
and T is the final time of the measurement. We note that the phase may change through time due to
both the gradient as well as position. Figure 11 illustrates how molecules may move through time and
therefore may experience different magnetic gradients as their position changes.

4.1.4. S-value

The S-value roughly indicates the average phase in each voxel, as illustrated in Figure 12. For the
phase of each molecule, ϕj , we calculate

Sx =
∑
j

exp
(
−iϕj

x

)
,

Sy =
∑
j

exp
(
−iϕj

y

)
,

Sz =
∑
j

exp
(
−iϕj

z

)
,

where i here is the imaginary unit. The S-value is calculated simply as S = Sx + Sy + Sz.

4.1.5. Quantities of interest

The ‘standard’ MRI pictures that one would expect to see are usually a 2D slice in space (say, a
rectangular slice in the x-y plane for a fixed z), for a fixed b (i.e. for a fixed choice of magnetic
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Figure 13: (a) An example of a ‘standard’ MRI image, showing a placenta and the attached fetus. Provided by
private correspondence with George Hutchinson. (b) Corresponding S-vs-b plot to that selected by
the magenta-coloured cross in Figure 13(a), with a bi-exponential fit of the data.

gradient), and an appropriate colourbar scale chosen for S. An example MRI image of the placenta
and surrounding area is shown in Figure 13(a) for b = 1. More useful quantities compared to these
‘standard’ pictures are in fact plots of S-vs-b for specific single voxels (ie, given (x, y, z) coordinate);
the ‘standard’ MRI pictures allow for study of changing S-value over a single x-y slice, but it is useful
to also study the relationship of quantities over other axes. For some sets of data, the relationship
between S and b can be modelled by a bi-exponential fit; i.e. we want to fit to something of the form

S = S0(fIVIM exp{−bD∗}+ (1− fIVIM) exp{−bD}),

where we fit for the parameters S0, fIVIM, D, and D∗. A full explanation of these parameters can be
found at [45], but a rough list of explanations is: D describes the amount of diffusion of molecules due to
random collisions between individual molecules; D∗ describes the amount of so-called pseudodiffusion,
which relates to the collective motion of molecules; fIVIM denotes the fraction of molecules that
experience the pseudodiffusion (and (1− fIVIM) describes the fraction of molecules that experience
diffusion); S0 is simply a scaling constant. These parameters describe intravoxel incoherent motion
(IVIM), which manifests itself in the data by seeing two regions of decay in the S-vs-b plots — the two
regions are separated due to D∗ ≈ 10D, helpfully allowing MRI scanners to study both phenomena.
An example of an S-vs-b graph with an IVIM fit is given in Figure 13(b), for which this voxel’s data
corresponds to the voxel marked with a magenta cross in Figure 13(a). We note that the fit of the
bi-exponential is not perfect: the fit is designed to describe molecules that are diffusing at either of
the two different rates (D and D∗), for a different volume fraction (fIVIM). Despite this, as well as
some clear noise contamination, the data in Figure 13(b) is reasonably well approximated by the IVIM
fit shown in blue, showing a faster diffusion effect between b = 1 and approximately b = 20 for the
pseudodiffusion, and a slower ‘true’ diffusion effect for b > 20.

4.2. Synthetic MRI Measurements

To ultimately compare simulated velocity fields with real velocity fields, we aim to simulate the physics
described in Section 4.1 and recreate what an MRI scanner may have read had the flow been physical,
so that we can make direct comparison with MRI measurements.

Simulating the MRI quantities on the velocity solution presented in Section 3.1, shown in Figure 5(b),
we arrive at Figure 14; note that the figure shown in this report is not the full figure, rather the full
figure can be viewed online via https://phd2.blakey.family/. We note that an interesting phenomenon
is shown in voxel number 101, taken from 15; notably, the fitted fIVIM curve simulated data fails to
describe the bouncing effect (also known as refocusing), where the descent of S against b temporarily
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Figure 14: (incomplete) View full-resolution image online at https://phd2.blakey.family/. This is a synthetic
MRI simulation containing 256 voxels on a placentone; only 4 are shown here for ease of presentation.
Please view the full-resolution image via the link. Left shows logarithmically-scaled velocity profile
for a single placentone; right shows the corresponding S-vs-b plots for each indicated voxel. Voxels
are assumed to be 2.5mm× 2.5mm in size.

ascends before descending again, which are usually found in areas of rapid flow [5]. Regardless, the
fIVIM fits are pretty good at describing the behaviour of the data for most voxels, and are computed
as standard in the placental MRI literature.

4.3. Toward Model Validation

Earlier in the report, Figure 13(a) showed S for an MRI scan of a patient’s placenta; for the same
scan, we may plot the fitted value of fIVIM in the x-y slice for a single b-value, giving a single number
per voxel, which shown in Figure 16(a); note that we only plot fIVIM for the region of interest (i.e
the placenta) and set fIVIM = 0 elsewhere. We can compare the subfigures of Figure 16, noting that
Figures 16(a) and 16(b) in the top row correspond the real world data, and Figures 16(c) and 16(d) in
the bottom row correspond to simulated data from our Darcy-Brinkman model. Since our generation
of synthetic MRI data is performed only on a single placentone and the real MRI data is given on the
entire placenta, we can’t be exactly sure on how to match the voxels between the real and simulated
data. Roughly, fIVIM tells us what proportion of the fluid is moving quickly, so using Figure 16(a) we
may be able to cross-reference areas of high fIVIM on the real MRI data with areas we know to have
high velocity in the simulated velocity field. The relatively high concentration of fIVIM of the real
data, located on the right side of Figure 16(a), suggests that this could be flow entering the IVS from
a spiral artery, with the voxel marked with a black cross located somewhere in the IVS close to high
velocity flow. We pick voxel 69 from Figure 14, which lies close to the centreline above the spiral artery
in our placentone flow simulation, to make comparison with the voxel indicated with a black cross in
Figure 16(a). Recalling that the real MRI data in Figure 16(b) may contain noise, this figure and the
simulated MRI data in Figure 16(d) appear to have a reasonably good correspondence, after some
scaling: certainly, the bi-exponential fit have the same general behaviour with the pseudodiffusion
effect visible for roughly b < 50, and the regular diffusion effect visible for b > 50.
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(a) (b)

Figure 15: Zoomed-in images of Figure 14. (a) Logarithmically-scaled velocity profile for voxel number 101. (b)
The corresponding S-vs-b and IVIM fit plot for voxel number 101.

5. Model Development

5.1. Septal Veins

In Section 3.2 we modelled a 2D slice of a placenta containing 6 placentones, each with 2 veins and 1
artery, as well as 2 corner veins that are located on the chorionic plate. In this section we investigate
the influence of septal veins on blood flow.

Figure 17(a) shows the existence of septal veins, for which there are thought to be 5–6 such veins in
the entire placenta. Figure 17(b) shows that in a perfusion experiment that flow does pass through
septa. We choose to add 4 septal veins to our 2D placental slice, mostly reusing the existing placenta
domain introduced in Section 3.2. We add these 4 veins on 4 different septa, varying the height and
side on which they are located on. Figure 18(a) shows the described domain.
We again run the simulations as undertaken in Section 3.2, where we have chosen the boundary

conditions such that there is Poiseuille parablolic flow perpendicular to the inlets as given in Equation
(8), zero outward flux on all outlets (gN = 0), and no slip elsewhere (gD = 0). We employ a mesh with
refinement near inlets and outlets, ultimately giving 1,146,246 elements. Polynomial degree 2 is chosen
in the velocity components and polynomial degree 1 in the pressure component. The corresponding
mesh is shown in Figure 18(b).
Comparing Figures 7(b) and 19, we notice a few differences. Firstly, the simulation without septal

veins is symmetric (as expected), whereas the simulation with septal veins is asymmetric, most likely
due to the choice of the locations of the additional veins. Secondly, we notice that the simulation with
septal veins has less slow-moving fluid; there is less blue in the simulation with septal veins. Thirdly,
there appears to be more movement between placentones in the sub-chorionic space (SCS), which lies
above the septal walls, when septal veins are present.
These results show that septal veins do have an impact on blood flow, in particular showing that

their inclusion in the simulations produces less slow-moving fluid, and therefore may be important in
the transport of nutrients through the placenta.
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Figure 16: Comparison of real MRI data with the simulated MRI data from our flow model. (a) The fitted
fIVIM from real MRI data over the entire placental area. (b) The corresponding S-vs-b and IVIM fit
plot for the voxel marked with a black cross in (a). (c) Logarithmically-scaled velocity profile for
voxel number 69 on the simulated velocity field, from Figure 15(a). (d) The corresponding S-vs-b
and IVIM fit plot for (c).

(a) (b)

Figure 17: Images provided by private correspondence with Lopa Leach. (a) Fluorescent staining of a visible
opening on a septal wall. (b) Septa between placentones (or equivalently cotyledons) are perfused
with blood; blue ink injected into one placentone is shown to have flowed into veins of septa and
toward the marginal sinus.
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Figure 18: (a) Diagram illustrates a simple 2D geometry for a slice of the whole placenta, consisting of 6
adjacent placentones, with an additional 4 veins located on the septa. (b) Mesh used for simulation
described in Section 5.1.
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Figure 7(b): (repeated) Plot showing logarithmic velocity magnitude in colour (blue is slow, red is fast) with
black streamlines and arrows for the placentone simulation described in Section 3.2.

Figure 19: Plot showing logarithmic velocity magnitude in colour (blue is slow, red is fast) with black streamlines
and arrows for the placentone simulation described in Section 5.1.

5.2. Nutrient Transport

Reaction-advection-diffusion equations are commonly used for modelling the transport of physical
quantities that experience a combination of reactive, advective, and diffusive processes. This equation
can be utilised in nutrient transport by forming a one-way coupling from the velocity field equations
to the reaction-advection-diffusion equations ([46, 47]); that is to say, in this context, we solve the
Darcy-Brinkman flow field, from which the computed flow field will form the convective velocity in the
first-order term of the proposed reaction-advection-diffusion model.
We focus on modelling transport of nutrients from maternal blood to fetal blood. We once again

split the domain boundary, ∂Ω, into two disjoint sets, ΓRAD
D and ΓRAD

N , respectively corresponding
to the Dirichlet and Neumann conditions of the reaction-advection-diffusion problem; we again have
the restrictions that ΓRAD

D ̸= ∅ and ΓN := ∂Ω \ ΓRAD
D . Note that ΓRAD

D and ΓRAD
N which define

the Dirichlet and Neumann boundaries, respectively, for this problem may in general be different
to those from regions chosen in our Darcy-Brinkman equations in Equation (2). The dimensional
reaction-advection-diffusion equations are given by: find c such that

∂c

∂t
−D∇2c+∇ · (uc) +Rc = fRAD in Ω, (9a)

c = gRAD
D on ΓRAD

D , (9b)

∇c · n = gRAD
N on ΓRAD

N , (9c)

where fRAD, gRAD
D , and gRAD

N are functions of the spatial coordinates, t is time, D is a scalar diffusion
coefficient, u(x) is a prescribed convective transport velocity on Ω obtained from the approximation to
Equation (3), and R is a scalar reaction coefficient.
We nondimensionalise this problem with scalings: c → Cc, x → Lx, u → Uu, t → L

U t, f
RAD →

CU
L fRAD; where L is the same length-scale chosen for the Darcy-Brinkman model, U is the same
velocity-scale chosen for the Darcy-Brinkman model, and C is the scaling of the concentration we are
simulating.
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Substituting these variables gives us our nondimensional reaction-advection-diffusion equations: find
c such that

∂c

∂t
− 1

Pe
∇2c+∇ · (uc) +Dm c = fRAD in Ω, (10a)

c = gRAD
D on ΓRAD

D , (10b)

∇c · n = gRAD
N on ΓRAD

N , (10c)

where Pe := LU
D is the Péclet number that describes ratio of advection-to-diffusion, and Dm := RL

U is
the Damköhler number that describes ratio of reaction-to-advection.

For the discretisation of our nondimensional reaction-advection-diffusion equations in Equation (10),
we first take a simple finite-difference for the ∂c

∂t term. We introduce time levels

0 = t0 < t1 < ... < tN ,

where N ∈ N, and take a backward (implicit) Euler method by setting

∂cn+1

∂t
→ cn+1 − cn

∆t
,

where we are looking to solve for c at the (n+ 1)st step, n ∈ N, and exponents here denote time step
values; that is, cn represents c(x) at time-step number n, and cn+1 represents c(x) at time-step number
n+ 1. The time-stepping here is uniform (i.e. ∆t = tn+1 − tn is constant for all n).

Similarly to Section 2.1, we introduce the finite element space

Wh := {w ∈ L2(Ω) : w|κ ∈ Pr(κ), κ ∈ Th}. (11)

With minor modification to [26] to account for the ∂c
∂t term, we can give our DGFEM discretisation of

the nondimensional reaction-advection-diffusion equations: find cn+1
h ∈ Wh such that∫

Ω
(cn+1

h dh +
1

Pe
∇cn+1

h · ∇dh + (∇ · u)cn+1
h dh + (∇cn+1

h · u)dh +Dm cn+1
h dh) dx

+

∫
F I
h∪F

D
h

(−{{ 1

Pe
∇cn+1

h }} · [[dh]]− {{ 1

Pe
∇dh}} · [[cn+1

h ]] + σRAD[[cn+1
h ]] · [[dh]]) dx

−
∑
κ∈Th

∫
∂−κ\∂Ω

u · nκ(c
n+1,+
h − cn+1,−

h )d+h ds−
∑
κ∈Th

∫
∂−κ∩ΓRAD

D

u · nκc
n+1,+
h d+h ds

=

∫
Ω
fRADdh dx+

∫
ΓRAD
D

gRAD
D (σRADdh −∇dh) ds+

∫
ΓRAD
N

gRAD
N dh ds

−
∑
κ∈Th

∫
∂−κ∩ΓRAD

D

u · ngRAD
D d+h ds

(12)

for all dh ∈ Wh, for each given cnh for n ∈ [0, N ] (N is total number of time steps), where σRAD = 10 r2

h
is the DGFEM symmetric interior penalty parameter for total polynomial degrees r on each element,
κ ∈ Th, ∂−κ denotes the region of outflow flux from an element, κ ∈ Th, and c−, d− respectively
denote the exterior traces of c and d, and c+, d+ respectively denote the interior traces of c and d.
Note throughout this discretisation that all scripts with ‘RAD’ denote that these are different to their
equivalents chosen for the Darcy-Brinkman problem in Section 2.2, and are specific to the current
reaction-advection-diffusion problem.

We run a simulation on the whole placenta domain, sketched in Figure 18(a), where we first solve our
Darcy-Brinkman equations from Equation (3) for a steady-state velocity field, which is then one-way
coupled through u to the reaction-advection-diffusion equation in Equation (10). We choose parameters
values specific to oxygen transport, but the details so far can be applied to modelling of other nutrients.

For oxygen, we set fRAD = 0 for no external forcing, L = 4 × 10−2 [11], k = 1 × 10−8 [9],
U = 1× 10−1 [12], D = 1.667× 10−9 [11], R = 1.667× 10−2 [11]; these choices yield Pe = 2.400× 106
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and Dm = 6.667× 10−3. We select a mesh that has been h-adapted 1 time according to the velocity
solution (refining the elements with indicators on the velocity solution in the top 30% among all error
indicators), which is shown in Figure 20(a). We select polynomial degree 2 in the velocity components,
1 in the pressure space, and 1 in the space for the concentration of nutrients, c. We set the boundary
conditions as chosen in Section 3.2 for the velocity problem, and for the concentration problem we
set gRAD

D = 1 on inlets and gRAD
D = 0 on outlets. We set ∆t = 1 and run until t = T := 1000. We

also set an initial condition at time t = 0 of c0 = 0 everywhere except the inlets. Still images of the
nutrient transport simulation at nondimensional times t = 1, t = 30, t = 120, and t = 1000 are shown
in Figures 20(b)–20(e); note that due to the choice of scalings that these respectively correspond to
dimensional times 0.2 s, 12 s, 48 s, and 400 s.
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(a)

(b)

(c)

(d)

(e)

Figure 20: (a) Mesh of the oxygen transport simulation described in Section 5.2. (b–e) Still
images of concentration of oxygen transported by maternal blood flow for nondi-
mensional times (b) t = 1, (c) t = 30, (d) t = 120, (e) t = 1000; please see
https://phd2.blakey.family/ for full animation.
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Figure 20(b) shows the oxygen concentration shortly after the simulation has begun; we see that
the concentration is spreading radially from the inlet location. We note that this is the point in the
simulation where the concentration is moving quickest, due to the high velocity of blood near the
inlet. Figure 20(c) shows the concentration of oxygen after it has reached the outlets immediately
neighbouring the inlets; the oxygen concentration has already reached the corner outlets by this time.
Figure 20(d) shows the oxygen concentration as some of the oxygen begins to be transported over the
walls from the outer-most placentones to the next placentones, showing that oxygen entering in one
placentone may exit through another. Figure 20(e) shows the oxygen concentration at the final time of
our simulation, and after the oxygen concentration from outer-most placentones has been transported
to neighbouring placentones’ outlets. The full animation is available at https://phd2.blakey.family/.

5.3. Variable Permeability

We model the IVS in which maternal blood flows as a porous medium, but throughout Section 3 we
have so far neglected the fact that the villous tree may not necessarily span the entire IVS. For instance,
it has been reported by several authors that central cavity (the area that is located directly above the
spiral artery) is thought to contain no villous tree whatsoever [9, 12]. In the simulations of Lecarpentier
et al. [9], they make an elliptical area above the central cavity in which they simulate the Navier-Stokes
equations, and elsewhere simulate Darcy-Brinkman, in an attempt to properly capture the dynamics
of the central cavity. For simplicity, in this section we will solve Darcy-Brinkman everywhere, but vary
the permeability, k, in different regions.

We run the varying-permeability simulation with very similar parameters to those chosen in Section
3.1: L = 0.04, and k = 10−8 in most places, with k = 10−7 in the regions around the inlets and
outlets; we make these regions elliptical around the inlet [9], and circular around the outlets. Boundary
conditions are set identically to those in Section 3.1: Poiseuille parabolic inflow on the inlet given
in Equation (7), zero outward flux (gN = 0), and no slip elsewhere (gD = 0). And similarly, the
polynomial degrees are chosen as 2 in the velocity components and 1 in the pressure space. However, a
notable modification to the simulations in Section 3.1 is that we use an h-adapted mesh; we found by
using the same mesh, we found many spurious oscillations in the solution. By performing 2 steps of
h-adaptivity, where at each step we refined elements that had error indicator values in the top 30%
among all error indicators, we get the mesh shown in Figure 21(a), which is more refined primarily on
the interface between the two choices of permeability. Figure 21(b) shows the resulting solution, where
we’ve solved Stokes flow in the inlet and outlet pipes, and Darcy-Brinkman elsewhere.

Clearly there is more work to be completed here in terms of varying the permeability of the porous
medium, in particular on the scale of the entire placenta. Clark et al. [8] suggest that there are 60–100
individual trees in the placenta — roughly there is one tree per placentone. It would be interesting
to consider modelling the dynamics at the ‘trunks’ of these trees (where there may be larger solid
branches) either by varying the permeability, or by resolving trees exactly in this region and adopting
a free-flow model such as Stokes or Navier-Stokes.

6. Conclusions and Future Research Plan

In this report, we have given an overview of the placental modelling literature, and have a flow model
of maternal blood through the villous tree in the IVS of the placenta. Some authors in the literature
have considered simulations that resolve the villous tree exactly [9], but these can be expensive due to
the need for a high-resolution mesh and need for a free-flow model such as Navier-Stokes. We instead
opted for a porous medium description of the villous tree, for which we utilised a Darcy-Brinkman
fluid flow model. However, as reported by Burton et al. [12], the Reynolds number of flow in the spiral
artery is likely 20–80, which suggests that a better fluid flow model in the limited regions of high flow
rate may be more appropriate than our current models of Darcy-Brinkman and Stokes. Furthermore,
our model neglects the natural pulsatility of blood flow [48], and also the widening of the spiral artery
as it enters the IVS [12, 13], which are likely important features of blood flow in the placenta.
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(a) (b)

Figure 21: (a) Mesh for simulation described in Section 5.3 after 3 h-adaptive refinement steps. (b) Plot
showing logarithmic velocity magnitude in colour (blow is flow, red is fast) with black streamlines
and arrows for the variable permeability simulation described in Section 5.3.

We considered maternal blood flow in representative 2D placentone and 2D whole placenta domains,
for which the results agreed with work completed by Chernyavsky, Jensen, and Leach [11], and
Lecarpentier et al. [9]. However, unlike the work in [11], we did not consider the effect of moving
arteries and veins within these idealised domains; from the work by Dellschaft et al. [5], they found
that oxygen was delivered relatively uniformly across the placenta in vivo, and they suggested that this
could be due to the measured slow maternal blood flow rates. In diseased cases such as pre-eclampsia,
the maternal blood flow rates can be much higher [5, 12]. It would therefore be interesting to form a
range of numerical experiments that vary the inlet and outlet conditions and locations to see what
effect this has on the uniformity of nutrient delivery.

To pave the way for validation of our model, we introduced a new technique for synthetically generating
MRI data from a simulated velocity field, allowing for direct comparison with the measurements MRI
scanners make. We note that this technique is not specific to placental flows. We showed that certain
features were present in both the real MRI data and the synthetically generated MRI data. An issue
we encountered was how to match the voxel data from the idealised simulated domains to the real
data; we did this by matching areas of high flow in, but a better matching process is likely needed,
especially for areas away from the spiral artery. A natural extension to the work presented would be
to also generate MRI data from the whole placenta domain and compare again to real MRI data. A
potential paper may follow containing full details, in collaboration with George Hutchinson and Penny
Gowland. Further validation of our model may be performed with ex-vivo perfusion experiments by
another one of our collaborators, Lopa Leach.

We separately considered 3 different modifications to our model. Firstly, we incorporated additional
septal veins, which showed that their inclusion gave less slow-moving blood, and therefore may
be important in the transport of nutrients through the placenta. Secondly, we coupled a nutrient
transport model to the blood flow simulations which show that nutrients could be transported between
neighbouring placentones. Thirdly, we varied the permeability throughout the single placentone domain
to more accurately describe flow in the central cavity; a natural extension of this work would be to
vary the permeability in the whole placenta domain, potentially capturing the effects of larger villous
tree structures near the chorionic plate, or varying the permeability due to both space and velocity
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similarly to Erian, Corrsin, and Davis [10].
In this report, the placenta has been modelled only as a two-dimensional, rigid object with steady-

state flow; however, the placenta itself is very much a three-dimensional, time-dependent object. Huge
computational challenges arise can arise in this regime, so careful consideration will have to be given
to which features are most important to model. Chernyavsky, Jensen, and Leach derive an analytic
expression for a Darcy’s Law in a hemisphere [11], but this relies on some undesirable assumptions
such as the outlets being symmetrical about the inlet, and that the centres of inlets and outlets must
lie on a straight line; with the numerical methods developed here, although more computationally
expensive than analytic expressions, we do not have this limitation. We found the nutrient transport
simulation particularly challenging to run, despite being in 2D: we found that without a very high
resolution solution for the velocity solution, we would later find severe oscillations in the transport
solution as time progressed; adaptivity may be crucial in making this computationally easier, and
ultimately needs more investigation.

Future work over the coming months will concentrate on modelling the effects of the ‘utero-placental
pump’ phenomena reported by Dellschaft et al. [5], which will fully utilise the expertise in the supervisory
team for accurately modelling the phenomena, implementation of the arising FSI moving-boundary
problems, and ensuring that this is done with computational efficiency. Additionally, the whole placenta
geometry in this report neglected the muscular walls of the marginal sinus and may be an important
feature to model, and could potentially utilise some of the work with moving boundaries.

To give a summary of a summary, this year I have:

• Got a good grasp of the existing progress in placental modelling, including important gaps in the
literature

• Have completed first steps to a biophysical model of flow and nutrient transport, with several
ideas on how to improve the model, including:

– Varying the permeability and/or model throughout the domain

– Moving boundary simulations, to capture placental contractions

– Limited 3D simulations

• A potential paper in coming months with George Hutchinson on synthetic MRI data generation
from simulated velocity fields
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A. Summary of Training

All 30 credits are completed, and completed some Researcher Academy courses:

• MAGIC098: Adaptive Finite Element Methods [10 credits]

• G14UQN: Uncertainty Quantification [20 credits]

• Mind Matters: Looking after your mental wellbeing during your PhD

• Careers Beyond Academia

• Light your fire: Motivational tools for researchers

• Fire Safety Training

• Managing your time as a researcher

• Functional Breathing for Stress Relief

• Looking after your mental wellbeing in uncertain times

• Preparing for the first year progression

• Research integrity

B. Plan for Coming 12 Months

In reality, I expect a lot of these things will happen simultaneously over the next 12 months. However,
I will use the following as rough deadlines for these tasks.

October 2022 Investigate the effects of varying permeability throughout placenta domain; investigate
effect of varying inlet/outlet conditions on nutrient transport; investigate choice of
model in high Reynold number regions.

January 2023 Prepare/work towards paper with George Hutchinson on synthetic MRI; to have
made contact with Lopa Leach to validate parameter choices against ex-vivo perfusion
experiments.

April 2023 To have used moving mesh and FSI methods to model the ‘utero-placental’ contractions;
limited 3D simulations.

July 2023 To have decided the main structure of the thesis and work plan — the core of 2
chapters and introduction should be present, at a minimum.
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